第一章 python数据结构和算法--1.3 保留最后 N 个元素

2024-08-24 17:38

本文主要是介绍第一章 python数据结构和算法--1.3 保留最后 N 个元素,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题

在迭代操作或者其他操作的时候,怎样只保留最后有限几个元素的历史记录?

解决方案

使用 deque(maxlen=N) 构造函数会新建一个固定大小的队列。当新的元素加入并且这个队列已满的时候, 最老的元素会自动被移除掉。

代码示例:

from collections import deque
q = deque(maxlen=3)
q.append(1)
q.append(2)
q.append(3)
q
deque([1, 2, 3])
q.append(4)
q
deque([2, 3, 4])
q.append(5)
q
deque([3, 4, 5])

尽管你也可以手动在一个列表上实现这一的操作(比如增加、删除等等)。但是这里的队列方案会更加优雅并且运行得更快些。

更一般的, deque 类可以被用在任何你只需要一个简单队列数据结构的场合。 如果你不设置最大队列大小,那么就会得到一个无限大小队列,你可以在队列的两端执行添加和弹出元素的操作。在队列两端插入或删除元素时间复杂度都是 O(1) ,区别于列表,在列表的开头插入或删除元素的时间复杂度为 O(N) 。

代码示例:

q = deque()
q.append(1)
q.append(2)
q.append(3)
q
deque([1, 2, 3])
q.appendleft(4)
q
deque([4, 1, 2, 3])
q.pop()
3
q
deque([4, 1, 2])
q.popleft()
4

这篇关于第一章 python数据结构和算法--1.3 保留最后 N 个元素的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1103159

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

usaco 1.3 Prime Cryptarithm(简单哈希表暴搜剪枝)

思路: 1. 用一个 hash[ ] 数组存放输入的数字,令 hash[ tmp ]=1 。 2. 一个自定义函数 check( ) ,检查各位是否为输入的数字。 3. 暴搜。第一行数从 100到999,第二行数从 10到99。 4. 剪枝。 代码: /*ID: who jayLANG: C++TASK: crypt1*/#include<stdio.h>bool h

usaco 1.3 Calf Flac(暴搜)

思路是暴搜。 需要注意的地方是输入的方法,以及输出时的换行。 代码: /*ID: who jayLANG: C++TASK: calfflac*/#include<stdio.h>#include<string.h>#include<math.h>int main(){freopen("calfflac.in","r",stdin);freopen("calfflac.ou

usaco 1.3 Barn Repair(贪心)

思路:用上M块木板时有 M-1 个间隙。目标是让总间隙最大。将相邻两个有牛的牛棚之间间隔的牛棚数排序,选取最大的M-1个作为间隙,其余地方用木板盖住。 做法: 1.若,板(M) 的数目大于或等于 牛棚中有牛的数目(C),则 目测 给每个牛牛发一个板就为最小的需求~ 2.否则,先对 牛牛们的门牌号排序,然后 用一个数组 blank[ ] 记录两门牌号之间的距离,然后 用数组 an