大数据技术之Flume应用案例(2)

2024-08-24 15:52

本文主要是介绍大数据技术之Flume应用案例(2),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

 监控端口数据官方案例

步骤 1: 准备环境

步骤 2: 配置 Flume Agent

步骤 3: 启动 Flume Agent

步骤 4: 发送数据到 Flume

步骤 5: 查看 HDFS 中的数据

注意事项

示例说明

实时监控单个追加文件案例

需求分析

实现步骤

(1)确保环境变量配置正确

(2)创建 flume-file-hdfs.conf 文件

(3)运行 Flume

(4)开启 Hadoop 和 Hive 并操作 Hive 产生日志

(5)在 HDFS 上查看文件

实时监控目录下多个新文件案例

需求分析

实现步骤

(1)创建 flume-dir-hdfs.conf 文件

(2)启动监控文件夹命令

(3)向 upload 文件夹中添加文件

(4)查看 HDFS 上的数据

实时监控目录下的多个追加文件案例

需求分析

实现步骤

(1)创建 flume-taildir-hdfs.conf 文件

(2)启动监控文件夹命令

(3)向 files 文件夹中追加内容

(4)查看 HDFS 上的数据

Taildir Source 说明


 监控端口数据官方案例

Flume 可以用来监控网络端口数据,这对于收集来自不同系统的日志或数据非常有用。下面是一个使用 Flume 监控网络端口数据的官方示例,我们将使用 Flume 的 netcat source 来接收数据,并将其写入到 HDFS 中。

步骤 1: 准备环境

确保已经安装并配置好了 Flume 和 Hadoop。这里假设你已经在上一步中完成了 Flume 的安装。

步骤 2: 配置 Flume Agent

创建一个名为 flume-conf.properties 的配置文件,该文件将定义一个 Flume Agent 的配置。

配置文件 flume-conf.properties

# 定义 agent 名称
a1.sources = r1
a1.sinks = k1
a1.channels = c1# 配置 source
a1.sources.r1.type = netcat
a1.sources.r1.bind = localhost
a1.sources.r1.port = 44444# 配置 sink
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path = hdfs://localhost:9000/flume
a1.sinks.k1.hdfs.filePrefix = flume-logs
a1.sinks.k1.hdfs.fileType = DataStream
a1.sinks.k1.hdfs.rollInterval = 60
a1.sinks.k1.hdfs.rollSize = 512
a1.sinks.k1.hdfs.rollCount = 20
a1.sinks.k1.hdfs.writeFormat = Text
a1.sinks.k1.hdfs.useLocalTimeStamp = true# 配置 channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100# 配置 agent 的 source、channel 和 sink
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

步骤 3: 启动 Flume Agent

使用以下命令启动 Flume Agent:

$FLUME_HOME/bin/flume-ng agent --conf $FLUME_HOME/conf --conf-file ./flume-conf.properties --name a1 -Dflume.root.logger=INFO,console

这里 $FLUME_HOME 是 Flume 的安装目录。

步骤 4: 发送数据到 Flume

你可以使用 netcat 工具或其他类似工具发送数据到 Flume 监听的端口。例如,如果你在另一台机器上或同一台机器的不同终端窗口中,可以使用 netcat 发送数据:

echo "This is a test message" | nc localhost 44444

步骤 5: 查看 HDFS 中的数据

一旦数据被发送到 Flume,Flume 将其写入到 HDFS 中。你可以使用 Hadoop 命令来查看数据:

hadoop fs -ls /flume
hadoop fs -cat /flume/flume-logs-*

注意事项

  • 确保 Hadoop 的 hdfs-site.xml 和 core-site.xml 配置文件已经正确配置。
  • 如果你的 Hadoop 集群使用了安全模式,确保你已经配置了正确的 Kerberos 凭证。
  • 如果你使用的是分布式 Flume,确保所有的 Flume 节点都能够访问 HDFS。

示例说明

  • Netcat Source (a1.sources.r1):配置了 netcat source 来监听 localhost 的 44444 端口。
  • HDFS Sink (a1.sinks.k1):配置了 HDFS sink 将数据写入到 HDFS 的 /flume 目录下。
  • Memory Channel (a1.channels.c1):使用内存 channel 作为 source 和 sink 之间的缓冲区。

实时监控单个追加文件案例

需求分析

  • 实时读取本地文件到HDFS案例
  • Hive日志文件位于 /opt/module/hive/logs/hive.log
  • Flume监控该文件
  • 数据最终存储到HDFS

实现步骤

(1)确保环境变量配置正确

确认 /etc/profile.d/my_env.sh 文件中包含以下内容:

JAVA_HOME=/opt/module/jdk1.8.0_212
HADOOP_HOME=/opt/module/ha/hadoop-3.1.3
PATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
export PATH JAVA_HOME HADOOP_HOME
(2)创建 flume-file-hdfs.conf 文件

创建文件 flume-file-hdfs.conf,并添加如下内容:

# Name the components on this agent
a2.sources = r2
a2.sinks = k2
a2.channels = c2# Configure the source
a2.sources.r2.type = exec
a2.sources.r2.command = tail -F /opt/module/hive/logs/hive.log
a2.sources.r2.shell = /bin/bash -c# Configure the sink
a2.sinks.k2.type = hdfs
a2.sinks.k2.hdfs.path = hdfs://hadoop12:9000/flume/%Y%m%d/%H
a2.sinks.k2.hdfs.filePrefix = logs-
a2.sinks.k2.hdfs.round = true
a2.sinks.k2.hdfs.roundValue = 1
a2.sinks.k2.hdfs.roundUnit = hour
a2.sinks.k2.hdfs.useLocalTimeStamp = true
a2.sinks.k2.hdfs.batchSize = 1000
a2.sinks.k2.hdfs.fileType = DataStream
a2.sinks.k2.hdfs.rollInterval = 60
a2.sinks.k2.hdfs.rollSize = 134217700
a2.sinks.k2.hdfs.rollCount = 0# Configure the channel
a2.channels.c2.type = memory
a2.channels.c2.capacity = 1000
a2.channels.c2.transactionCapacity = 100# Bind the source and sink to the channel
a2.sources.r2.channels = c2
a2.sinks.k2.channel = c2
(3)运行 Flume
[lzl@hadoop12 flume]$ bin/flume-ng agent --conf conf/ --name a2 --conf-file job/flume-file-hdfs.conf
(4)开启 Hadoop 和 Hive 并操作 Hive 产生日志
[lzl@hadoop12 hadoop-2.7.2]$ sbin/start-dfs.sh
[lzl@hadoop13 hadoop-2.7.2]$ sbin/start-yarn.sh
[lzl@hadoop12 hive]$ bin/hive
(5)在 HDFS 上查看文件
hadoop fs -ls /flume

实时监控目录下多个新文件案例

需求分析

  • 使用 Flume 监听整个目录的文件,并上传至 HDFS
  • 被监控的目录位于 /opt/module/flume/upload

实现步骤

(1)创建 flume-dir-hdfs.conf 文件

创建文件 flume-dir-hdfs.conf,并添加如下内容:

# Name the components on this agent
a3.sources = r3
a3.sinks = k3
a3.channels = c3# Configure the source
a3.sources.r3.type = spooldir
a3.sources.r3.spoolDir = /opt/module/flume/upload
a3.sources.r3.fileSuffix = .COMPLETED
a3.sources.r3.fileHeader = true
a3.sources.r3.ignorePattern = ([^ ]*\.tmp)# Configure the sink
a3.sinks.k3.type = hdfs
a3.sinks.k3.hdfs.path = hdfs://hadoop12:9000/flume/upload/%Y%m%d/%H
a3.sinks.k3.hdfs.filePrefix = upload-
a3.sinks.k3.hdfs.round = true
a3.sinks.k3.hdfs.roundValue = 1
a3.sinks.k3.hdfs.roundUnit = hour
a3.sinks.k3.hdfs.useLocalTimeStamp = true
a3.sinks.k3.hdfs.batchSize = 100
a3.sinks.k3.hdfs.fileType = DataStream
a3.sinks.k3.hdfs.rollInterval = 60
a3.sinks.k3.hdfs.rollSize = 134217700
a3.sinks.k3.hdfs.rollCount = 0# Configure the channel
a3.channels.c3.type = memory
a3.channels.c3.capacity = 1000
a3.channels.c3.transactionCapacity = 100# Bind the source and sink to the channel
a3.sources.r3.channels = c3
a3.sinks.k3.channel = c3
(2)启动监控文件夹命令
[lzl@hadoop12 flume]$ bin/flume-ng agent --conf conf/ --name a3 --conf-file job/flume-dir-hdfs.conf
(3)向 upload 文件夹中添加文件
[lzl@hadoop12 flume]$ mkdir upload
[lzl@hadoop12 upload]$ touch lzl.txt
[lzl@hadoop12 upload]$ touch lzl.tmp
[lzl@hadoop12 upload]$ touch lzl.log
(4)查看 HDFS 上的数据
hadoop fs -ls /flume/upload

 

实时监控目录下的多个追加文件案例

需求分析

  • 使用 Flume 监听整个目录的实时追加文件,并上传至 HDFS
  • 被监控的目录位于 /opt/module/flume/files

实现步骤

(1)创建 flume-taildir-hdfs.conf 文件

创建文件 flume-taildir-hdfs.conf,并添加如下内容:

# Name the components on this agent
a3.sources = r3
a3.sinks = k3
a3.channels = c3# Configure the source
a3.sources.r3.type = TAILDIR
a3.sources.r3.positionFile = /opt/module/flume/tail_dir.json
a3.sources.r3.filegroups = f1 f2
a3.sources.r3.filegroups.f1 = /opt/module/flume/files/.*file.*
a3.sources.r3.filegroups.f2 = /opt/module/flume/files2/.*log.*# Configure the sink
a3.sinks.k3.type = hdfs
a3.sinks.k3.hdfs.path = hdfs://hadoop12:9000/flume/upload2/%Y%m%d/%H
a3.sinks.k3.hdfs.filePrefix = upload-
a3.sinks.k3.hdfs.round = true
a3.sinks.k3.hdfs.roundValue = 1
a3.sinks.k3.hdfs.roundUnit = hour
a3.sinks.k3.hdfs.useLocalTimeStamp = true
a3.sinks.k3.hdfs.batchSize = 100
a3.sinks.k3.hdfs.fileType = DataStream
a3.sinks.k3.hdfs.rollInterval = 60
a3.sinks.k3.hdfs.rollSize = 134217700
a3.sinks.k3.hdfs.rollCount = 0# Configure the channel
a3.channels.c3.type = memory
a3.channels.c3.capacity = 1000
a3.channels.c3.transactionCapacity = 100# Bind the source and sink to the channel
a3.sources.r3.channels = c3
a3.sinks.k3.channel = c3
(2)启动监控文件夹命令
[lzl@hadoop12 flume]$ bin/flume-ng agent --conf conf/ --name a3 --conf-file job/flume-taildir-hdfs.conf
(3)向 files 文件夹中追加内容
  • 在 /opt/module/flume 目录下创建 files 文件夹
[lzl@hadoop12 flume]$ mkdir files
  • 向 files 文件夹中添加文件
[lzl@hadoop12 files]$ echo hello >> file1.txt
[lzl@hadoop12 files]$ echo lzl>> file2.txt
(4)查看 HDFS 上的数据
hadoop fs -ls /flume/upload2
Taildir Source 说明
  • Position File: Taildir Source 维护了一个 JSON 格式的 positionFile,它会定期地往 positionFile 中更新每个文件读取到的最新位置,因此能够实现断点续传。
  • Position File 格式:
    {"inode": 2496272,"pos": 12,"file": "/opt/module/flume/files/file1.txt"
    }
    {"inode": 2496275,"pos": 12,"file": "/opt/module/flume/files/file2.txt"
    }
  • Note: Linux 中存储文件元数据的区域称为 inode,每个 inode 都有一个编号,操作系统用 inode 编号来识别不同的文件。Unix/Linux 系统内部不使用文件名,而是使用 inode 编号来识别文件。

这篇关于大数据技术之Flume应用案例(2)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1102929

相关文章

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

Python实现将实体类列表数据导出到Excel文件

《Python实现将实体类列表数据导出到Excel文件》在数据处理和报告生成中,将实体类的列表数据导出到Excel文件是一项常见任务,Python提供了多种库来实现这一目标,下面就来跟随小编一起学习一... 目录一、环境准备二、定义实体类三、创建实体类列表四、将实体类列表转换为DataFrame五、导出Da

Python实现数据清洗的18种方法

《Python实现数据清洗的18种方法》本文主要介绍了Python实现数据清洗的18种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录1. 去除字符串两边空格2. 转换数据类型3. 大小写转换4. 移除列表中的重复元素5. 快速统

Python数据处理之导入导出Excel数据方式

《Python数据处理之导入导出Excel数据方式》Python是Excel数据处理的绝佳工具,通过Pandas和Openpyxl等库可以实现数据的导入、导出和自动化处理,从基础的数据读取和清洗到复杂... 目录python导入导出Excel数据开启数据之旅:为什么Python是Excel数据处理的最佳拍档

将Python应用部署到生产环境的小技巧分享

《将Python应用部署到生产环境的小技巧分享》文章主要讲述了在将Python应用程序部署到生产环境之前,需要进行的准备工作和最佳实践,包括心态调整、代码审查、测试覆盖率提升、配置文件优化、日志记录完... 目录部署前夜:从开发到生产的心理准备与检查清单环境搭建:打造稳固的应用运行平台自动化流水线:让部署像

在Pandas中进行数据重命名的方法示例

《在Pandas中进行数据重命名的方法示例》Pandas作为Python中最流行的数据处理库,提供了强大的数据操作功能,其中数据重命名是常见且基础的操作之一,本文将通过简洁明了的讲解和丰富的代码示例,... 目录一、引言二、Pandas rename方法简介三、列名重命名3.1 使用字典进行列名重命名3.编

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX