一文彻底理解大模型 Agent 智能体原理和案例

2024-08-24 15:04

本文主要是介绍一文彻底理解大模型 Agent 智能体原理和案例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1

什么是大模型 Agent ?

大模型 Agent,作为一种人工智能体,是具备环境感知能力、自主理解、决策制定及执行行动能力的智能实体。简而言之,它是构建于大模型之上的计算机程序,能够模拟独立思考过程,灵活调用各类工具,逐步达成预设目标的智能存在。

Agent 是 AI 大模型应用的主要新形态,在技术架构范式也发生了很大的变化,从面向过程的架构变成了面向目标架构。


2

Agent 架构设计剖析

大模型虽作为智能体的核心“大脑”,负责思维与决策,但仅凭此并不足以胜任复杂任务的执行。为了全面实现智能体的功能,还需融入类似“神经感官系统”以感知环境,以及“肢体”以执行实际动作的元素。这正是构建 Agent 技术架构的初衷,旨在通过这一框架,将感知、思考与行动三者紧密结合,共同作用于复杂任务的完成。

如上图所示,Agent 共由4个关键部分组成:规划(Planning)、记忆(Memory)、工具(Tools)、行动(Action),下面详细剖析。

1、规划(Planning)

"规划"是智能体的思维模型。类比人类,面对任务,我们先构思解决方案,拆解为子任务,评估工具,执行中反思调整,并考量终止时机。通过大模型提示工程,比如:ReAct、CoT 推理模式,可赋予智能体类似思维模式,精准拆解复杂任务,分步解决。

2、记忆(Memory)

记忆,即信息存储与回忆。智能体模拟人类,设短期记忆存会话上下文,助多轮对话,任务毕则清;长期记忆存用户特征、业务数据,向量数据库速存速查。

3、工具(Tools)

智能体依据“工具”感知环境、执行决策。工具比如:神经感官,助其获取信息、执行任务。配备多样工具并赋权,比如:API 调用业务信息,插件扩展大模型能力,比如:ChatPDF 解析文档、Midjourey 文生图。

4、行动(Action)

智能体依规划与记忆,执行具体行动,包括与外部互动或工具调用,实现输入至输出的转化。比如:智能客服回复、查询天气预报、AI 机器人抓起物体等等。

3

大模型 Agent 案例

案例一:Agent 预定餐厅

为了更好地理解 大模型 Agent,我们一起来看个生活中的场景:假设你需要与朋友在附近吃饭,需要 Agent 帮你预订餐厅。

Agent 会先对您提出的任务进行规划如下:

第一步:获取当前位置
  • 推理 1:当前知识不足以回答这个问题,需要知道当前所在位置以及附近的餐厅;

  • 行动 1:使用地图工具(Tools)获取当前所在位置;

  • 结果 1:得出附近餐厅列表。

第二步:确定匹配餐厅
  • 推理 2:确定预订的餐厅,需要知道饮食偏好以及其他细节(比如:吃饭时间、人数);

  • 行动 2:从记忆(Memory)中获取您的饮食偏好、人数、时间等信息;

  • 结果 2:确定最匹配的餐厅。

第三步:预订餐厅
  • 推理 3:基于结果2,评估当前所拥有的工具能否完成餐厅预订;

  • 行动 3:使用相关插件工具,进行餐厅预订(Aciton);

  • 结果 3:任务完成。

案例二:完成工作报表 Agent

构建【工作报告智能体】整体步骤如下:

第一步:规划(Planning):设计 Prompt 引导大模型拆解“生成工作报告”任务,细化为四步:数据收集、报告整理、汇报人选定、自动提交。

第二步:工具(Tools):针对大模型知识局限,采用 RAG 技术接入私有数据中心 API,获取客户数据;同时接入工作报告应用 API,赋予数据填充与提交权限。

第三步:记忆(Memory):分析员工历史报告,提炼风格、格式、周期、汇报人等特征,形成长记忆库,辅助新报告撰写。

第四步:行动(Action):依托工作报告应用权限,大模型完成报告后自动执行提交,实现全程自动化。

如何学习AI大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈

学习路线

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

这篇关于一文彻底理解大模型 Agent 智能体原理和案例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1102819

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

hdu4407(容斥原理)

题意:给一串数字1,2,......n,两个操作:1、修改第k个数字,2、查询区间[l,r]中与n互质的数之和。 解题思路:咱一看,像线段树,但是如果用线段树做,那么每个区间一定要记录所有的素因子,这样会超内存。然后我就做不来了。后来看了题解,原来是用容斥原理来做的。还记得这道题目吗?求区间[1,r]中与p互质的数的个数,如果不会的话就先去做那题吧。现在这题是求区间[l,r]中与n互质的数的和

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了