机器学习和数据挖掘(7):VC维

2024-08-24 11:08
文章标签 学习 机器 数据挖掘 vc

本文主要是介绍机器学习和数据挖掘(7):VC维,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

VC维

回顾与说明

如果一个假设空间存在突破点,则一定存在成长函数 mH(N) 被某个上限函数 B(N,k) 所约束,而上限函数等于一个组合的求和形式 k1i=0CiN ,易知该形式的最高次项是 Nk1 。图左和右分别是以上限函数为上限的情况和以为 Nk1 上限的情况。

可以看得出来:

mH(N)B(N,k)=i=0k1CiNNk1

再结合之前的霍夫丁不等式可得:

P[|Ein(g)Eout(g)|>ϵ]4mH(2N)exp(18ϵ2N)if k exists4Nk1exp(18ϵ2N)

该公式的意义是在输入样本N很大时,VC限制一定成立,同时等式的左边也一定会在 k3 的情况下被 Nk1 所约束(注意这里的条件没有了,原因很简单,VC限制是样本N很大的情况下产生的,因此一定满足的条件),而在 k<3 的情况下有其他的限制可以满足(比如前几章提到的如正射线之类的分类不需要多项式形式的限制也可以约束住成长函数)。

至此得知,满足以下几个条件,机器便可以学习:

  1. 假设空间的成长函数有一个突破点k;
  2. 输入数据样本N足够的大;

同时也通过VC限制得出了结论

  1. EinEout
  2. 通过算法可以找到一个假设使得 Ein0

VC维的定义

VC维(VC dimension)的定义是:最大的一个不是突破点的数,或者说,最大的一个数使得存在小于等于这些数的采样可以找到完全二分类的。

VC维是假设空间的一个性质,数据样本可以被完全二分的最大值。用 dvc 作为VC维的数学符号,假如突破点存在的话,即最小的突破点减去1就是V维;如果不存在突破点的话,则VC维为无限大。

若输入数据量 N 小于VC维,则有可能输入数据D会被完全的二分类(这里不是一定,VC维只能保证存在)。

如果输入数据量N(或者用k表示)大于VC维,则有k一定是假设空间H的突破点。

使用VC维 dvc 对公式(1)进行重写,在 N2dvc2 时,可得:

mH(N)i=0dvcCiNNdvc

对第五章中提到的几种分类,使用VC维取代突破点,表示VC维与成长函数的关系,如下表所示。

正射线

一维空间的感知器

间隔为正的分类

凸图形分类

二维平面的感知器

对上述可学习条件1中假设空间可以重新定义,即,假设空间需要具备有限的VC维。

一个有限的VC维总是能够保证寻找到的近似假设

这篇关于机器学习和数据挖掘(7):VC维的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1102308

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

Node.js学习记录(二)

目录 一、express 1、初识express 2、安装express 3、创建并启动web服务器 4、监听 GET&POST 请求、响应内容给客户端 5、获取URL中携带的查询参数 6、获取URL中动态参数 7、静态资源托管 二、工具nodemon 三、express路由 1、express中路由 2、路由的匹配 3、路由模块化 4、路由模块添加前缀 四、中间件