Qt坐标系统之三个坐标系和两个变换

2024-08-24 09:44

本文主要是介绍Qt坐标系统之三个坐标系和两个变换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

Qt坐标系统由QPainter类控制。它和QPaintDeviceQPaintEngine类一起构成Qt绘图系统的基础。QPainter用于执行绘图操作,QPaintDeviceQPainter用来绘制的一个二维空间的抽象,QPaintEngine提供在不同设备绘图的接口。
Qt 的坐标分为逻辑坐标物理坐标。在我们绘制时,提供给QPainter的都是逻辑坐标。所谓物理坐标,就是绘制底层QPaintDevice的坐标。单单只有逻辑坐标,我们是不能在设备上进行绘制的。要想在设备上绘制,必须提供设备认识的物理坐标。Qt 使用viewport-window机制将我们提供的逻辑坐标转换成绘制设备使用的物理坐标,方法是,在逻辑坐标物理坐标之间提供一层“窗口”坐标。视口是由任意矩形指定的物理坐标窗口则是该矩形的逻辑坐标表示。默认情况下,物理坐标逻辑坐标一致的,都等于设备矩形。

正文

简述

三个坐标系

  • 逻辑坐标系(Logical Coordinate System
    也称为用户坐标系,是在编程时最常使用的坐标系。
    坐标原点(0,0)通常位于窗口的左上角,X轴向右增长,Y轴向下增长。
    通过逻辑坐标系来指定图形元素(如线条、矩形等)的位置和大小。
  • 窗口坐标系(Window Coordinate System
    是逻辑坐标系经过变换(如缩放、旋转等)后得到的坐标系。
    用于在绘制过程中表示图形元素在窗口中的实际位置。窗口决定了我是看你的一部分还是整体。
    QPainter内部使用的一个坐标系,用于将逻辑坐标转换为绘图设备(如屏幕、打印机等)上的物理坐标。
  • 物理坐标系(Physical Coordinate System
    也称为设备坐标系,代表了绘图设备(如屏幕、打印机等)上的实际坐标系统。
    物理坐标系的原点、坐标轴方向以及单位(通常是像素)由绘图设备决定。
    QPainter最终会将图形元素绘制到物理坐标系中。

也就是说我们在绘制图像的时候一般是先在逻辑坐标系上构建想法,然后调用相关代码进行绘制,然后编译器编译时会将我们绘制在逻辑坐标系上的图形转换到窗口坐标系,最后转换到物理坐标系
默认情况下这三种坐标系是等同的。
它们之间的转换关系

Logical Coordinate System—>Window Coordinate System—>Physical Coordinate System
逻辑坐标setWindow()变换窗口坐标setViewport()变换物理坐标

两个变换

  • setWindow() 变换
    用于设置窗口坐标系的范围。相当于给逻辑坐标系加一个方框,然后我只能看到这个方框里面的东西
    通过调用setWindow(xMin, yMin, xMax, yMax),可以指定窗口坐标系的左下角和右上角坐标。
    这个变换主要影响逻辑坐标系到窗口坐标系的映射关系,进而影响图形元素在窗口中的实际位置
  • setViewport() 变换
    用于设置物理坐标系中用于绘图的矩形区域(即视口(如屏幕))。
    通过调用setViewport(x, y, width, height),可以指定视口在物理坐标系中的位置和大小。
    这个变换主要影响窗口坐标系到物理坐标系的映射关系,进而影响图形元素在物理设备上的实际绘制位置。

例子

首先调用resize(300,300), 然后绘制窗口的两条对角线(注意我们现在所使用的就是逻辑坐标系)
在这里插入图片描述

使用setWindow()

在这里插入图片描述

可以看到窗口大小本身并没有变化,但是线段更细了(上面两条挨着的是新绘制的),我就添加了一行代码painter.setWindow(0,0,600,600);这行代码的意思是我设置了一个新的逻辑坐标系,在该逻辑坐标系下,窗口原点位于该逻辑坐标系的(0,0)位置,窗口的宽和高分别为600(原逻辑坐标系宽高为300,所以显得扩大了2倍;由于扩大了两倍,原先两个点相当于现在的一个点所以显得细了);然后我下面继续调用绘图时就会在这个新的逻辑坐标系下进行绘制,所以说300像素在新的逻辑坐标系中只能是中间的位置。

  • 如果设置painter.setWindow(0,0,600,600);painter.setWindow(0,0,150,150);会发生什么呢?
    在这里插入图片描述

可以看到窗口大小本身并没有变化,但是线条显得更加粗了;这是由于在新的逻辑坐标系中窗口的大小被设置成了150x150;原先在逻辑坐标中是300x300,相当于压缩了,原先的两个点相当于现在的一个点。

  • 如果将painter.setWindow(0,0,600,600);改成painter.setWindow(20,30,520,180);会发生什么呢?
    在这里插入图片描述
    为什么会这样呢?新画的对角线为什么会超出边界呢?此时的窗口坐标系的取值如何计算?其实这也很好理解,我有一条对角线,取它的两个端点(0,0),(75,75)这是它的逻辑坐标,它的窗口坐标怎么计算呢?
    对于(0,0):

((30 + 0 * 520/300),(20 + 0 * 180/300) = (30, 20 )

对于(75,75):

((30 + 75 * 520/300),(20 + 75 * 180/300) = (159.75, 65)

对于此时窗口坐标系的取值

横坐标的取值范围为[30, 490],纵坐标的取值范围为[20,160]
对于线段上的点总归有些计算完窗口坐标后会超出坐标取值范围,使得其不在窗口上

使用setViewport()

还是使用刚才的例子,不过有些变化
在这里插入图片描述
可以看到窗口大小本身并没有变化,但是线条显得更加粗了;这是因为painter.setViewport(0,0,600,600);意思是将绘图操作的视口设置为一个从 (0,0) 开始,宽度和高度都是 600 个单位(由于没有修改相应的窗口坐标,窗口坐标范围不变);这个代码相当于把整个物理坐标系翻倍了。也就是单位逻辑坐标变大了。原来逻辑坐标画1个像素点,现在相当于画2个。

  • 如果设置painter.setViewport(0,0,600,600);painter.setViewport(0,0,150,150);会发生什么呢?

在这里插入图片描述
可以看到窗口大小本身并没有变化,但是线条显得更加细了;这是因为painter.setViewport(0,0,150,150);意思是将绘图操作的视口设置为一个从 (0,0) 开始,宽度和高度都是 150 个单位(由于没有修改相应的窗口坐标,窗口坐标范围不变);这个代码相当于把整个物理坐标系缩小2倍了。也就是单位逻辑坐标变小了。比如(75,75)转换成窗口坐标后为

((0 + 75 * 150/300),(0 + 75 * 150/300)) = (37.5, 37.5)
而37.5在300*300的窗口坐标中只占了1/8

  • 如果设置painter.setViewport(0,0,600,600);painter.setViewport(20,30,540,120);会发生什么呢?

在这里插入图片描述
我们将物理坐标原点修改为 (20, 30),长540,高是 120 的矩形时,窗口坐标范围不变,也就是说,我们将物理宽 540px 映射成窗口宽 300px,物理高 120px 映射成窗口高 300px。那么坐标如何计算呢?
比如还是(0,0)与(75,75)
对于(0,0):

((20 + 0 * 540/300),(30 + 0 * 120/300) = (20, 30 )

对于(75,75):

((20 + 75 * 540/300),(30 + 75 * 120/300) = (155, 165)

对于此时窗口坐标系的取值

横坐标的取值范围为[20, 520],纵坐标的取值范围为[30,90]

遗留小问题,如果将paintEvent中的内容改成

	QPainter painter(this);painter.setViewport(0, 0, 150, 150);painter.fillRect(0, 0, 150, 150, Qt::green);

那么将会有多少窗口被填充?
答案是1/16

这篇关于Qt坐标系统之三个坐标系和两个变换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1102125

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

【区块链 + 人才服务】可信教育区块链治理系统 | FISCO BCOS应用案例

伴随着区块链技术的不断完善,其在教育信息化中的应用也在持续发展。利用区块链数据共识、不可篡改的特性, 将与教育相关的数据要素在区块链上进行存证确权,在确保数据可信的前提下,促进教育的公平、透明、开放,为教育教学质量提升赋能,实现教育数据的安全共享、高等教育体系的智慧治理。 可信教育区块链治理系统的顶层治理架构由教育部、高校、企业、学生等多方角色共同参与建设、维护,支撑教育资源共享、教学质量评估、

软考系统规划与管理师考试证书含金量高吗?

2024年软考系统规划与管理师考试报名时间节点: 报名时间:2024年上半年软考将于3月中旬陆续开始报名 考试时间:上半年5月25日到28日,下半年11月9日到12日 分数线:所有科目成绩均须达到45分以上(包括45分)方可通过考试 成绩查询:可在“中国计算机技术职业资格网”上查询软考成绩 出成绩时间:预计在11月左右 证书领取时间:一般在考试成绩公布后3~4个月,各地领取时间有所不同

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

计算机毕业设计 大学志愿填报系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点赞 👍 收藏 ⭐评论 📝 🍅 文末获取源码联系 👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~Java毕业设计项目~热门选题推荐《1000套》 目录 1.技术选型 2.开发工具 3.功能

基于 YOLOv5 的积水检测系统:打造高效智能的智慧城市应用

在城市发展中,积水问题日益严重,特别是在大雨过后,积水往往会影响交通甚至威胁人们的安全。通过现代计算机视觉技术,我们能够智能化地检测和识别积水区域,减少潜在危险。本文将介绍如何使用 YOLOv5 和 PyQt5 搭建一个积水检测系统,结合深度学习和直观的图形界面,为用户提供高效的解决方案。 源码地址: PyQt5+YoloV5 实现积水检测系统 预览: 项目背景