TIM输出比较之PWM驱动直流电机应用案例

2024-08-24 05:20

本文主要是介绍TIM输出比较之PWM驱动直流电机应用案例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 一、应用案例演示
  • 二、电路接线图
  • 三、应用案例代码
  • 四、应用案例分析
    • 4.1 初始化PWM模块
      • 4.1.1 RCC开启时钟
      • 4.1.2 配置时基单元
      • 4.1.3 配置输出比较单元
      • 4.1.4 配置GPIO
      • 4.1.5 运行控制
    • 4.2 PWM输出模块
    • 4.3 电机模块
      • 4.3.1 Motor初始化模块
      • 4.3.2 电机调速模块
    • 4.4 主程序


前言

提示:本文主要用作在学习江科大自化协STM32入门教程后做的归纳总结笔记,旨在学习记录,如有侵权请联系作者
本案例实现了一个利用输出占空比可调的PWM信号来驱动直流电机的功能。每按一次按键电机按照增量或减量的速度正反转动,比如按一下,OLED上显示当前的速度值为+20,再按一下,+40,以此类推。其中正转显示为+,反转显示为-。


一、应用案例演示

TIM输出比较之PWM驱动直流电机

二、电路接线图

这里红色的模块是TB6612电机驱动模块,它的第一个引脚VM为电机电源,同样的我们可以把它接到STLINK的5V引脚上。第二个VCC逻辑电源,接面包板3.3V正极。第三个GND电源负极,接面包板的负极。之后AO1、AO2电机输出端,接电机的两根线。STBY待机控制脚,不需要待机,直接接逻辑电源3.3V正极。剩下的三个是控制引脚,AIN1和AIN2是方向控制,任意接两个GPIO就行了,这里我接的是PA4和PA5两个引脚。PWMA是速度控制,需要接PWM的输出脚,这里我接的是PA2这个引脚。最后在PB1接了一个按键用于控制电机。
在这里插入图片描述
在这里插入图片描述

三、应用案例代码

PWM.h文件:

#ifndef __PWM_H
#define __PWM_Hvoid PWM_Init(void);
void PWM_SetCompare3(uint16_t Compare);#endif

PWM.c实现文件:

#include "stm32f10x.h"                  // Device headervoid PWM_Init(void)
{RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);TIM_InternalClockConfig(TIM2);TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;TIM_TimeBaseInitStructure.TIM_Period = 100 - 1;		//ARRTIM_TimeBaseInitStructure.TIM_Prescaler = 36 - 1;		//PSCTIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;TIM_TimeBaseInit(TIM2, &TIM_TimeBaseInitStructure);TIM_OCInitTypeDef TIM_OCInitStructure;TIM_OCStructInit(&TIM_OCInitStructure);TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;TIM_OCInitStructure.TIM_Pulse = 0;		//CCRTIM_OC3Init(TIM2, &TIM_OCInitStructure);TIM_Cmd(TIM2, ENABLE);
}void PWM_SetCompare3(uint16_t Compare)
{TIM_SetCompare3(TIM2, Compare);
}

电机头文件Motor.h:

#ifndef __MOTOR_H
#define __MOTOR_Hvoid Motor_Init(void);
void Motor_SetSpeed(int8_t Speed);#endif

电机实现文件Motor.c:

#include "stm32f10x.h"                  // Device header
#include "PWM.h"void Motor_Init(void)
{RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 | GPIO_Pin_5;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);PWM_Init();
}void Motor_SetSpeed(int8_t Speed)
{if (Speed >= 0){GPIO_SetBits(GPIOA, GPIO_Pin_4);GPIO_ResetBits(GPIOA, GPIO_Pin_5);PWM_SetCompare3(Speed);}else{GPIO_ResetBits(GPIOA, GPIO_Pin_4);GPIO_SetBits(GPIOA, GPIO_Pin_5);PWM_SetCompare3(-Speed);}
}

主程序main.c:

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "Motor.h"
#include "Key.h"uint8_t KeyNum;
int8_t Speed;int main(void)
{OLED_Init();Motor_Init();Key_Init();OLED_ShowString(1, 1, "Speed:");while (1){KeyNum = Key_GetNum();if (KeyNum == 1){Speed += 20;if (Speed > 100){Speed = -100;}}Motor_SetSpeed(Speed);OLED_ShowSignedNum(1, 7, Speed, 3);}
}

完整工程:TIM输出比较之PWM驱动直流电机应用案例

四、应用案例分析

整体思路与LED呼吸灯那一章节基本是一致的,在那一章里已经讲得非常详细了,这里就不再累述了,不懂的可以回过头去看一看。

文章传送门在此:TIM输出比较之PWM驱动LED呼吸灯应用案例

在这里插入图片描述

这里需要注意的是,本案例换了一个GPIO口,所以对应的定时器的通道也要更换。如下表所示,可以看到PA2对应的是TIM2的CH3通道。

在这里插入图片描述

4.1 初始化PWM模块

4.1.1 RCC开启时钟

RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);

4.1.2 配置时基单元

TIM_InternalClockConfig(TIM2);TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;
TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;
TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInitStructure.TIM_Period = 100 - 1;		//ARR
TIM_TimeBaseInitStructure.TIM_Prescaler = 36 - 1;		//PSC
TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;
TIM_TimeBaseInit(TIM2, &TIM_TimeBaseInitStructure);

TIM_InternalClockConfig(TIM2);//选择时基单元的时钟源,选择内部时钟。若不调用这个函数,系统上电后默认也是内部时钟。

计算公式如下:
PWM频率:Freq = CK_PSC / (PSC + 1) / (ARR + 1)
PWM占空比:Duty = CCR / (ARR + 1)
PWM分辨率:Reso = 1 / (ARR + 1)
换算公式:1 MHz = 1,000 KHz = 1,000,000 Hz

假设我要输出一个频率为1KHz,占空比为50%,分辨率为1%的PWM波形,时钟源选择内部时钟,也就是说CK_PSC=72MHz。

代入公式计算可得:
Freq =1000 = 72000000 / 720 / 100
那么可以推算出PSC为719,ARR为99
同样的道理,Duty = 50% = CCR / 100,推算出CCR为50。
同样也可以推算出周期 T = 1 / 1000 = 0.001秒,也就是1毫秒。(频率是周期的倒数 f = 1 / T)

输出频率为1KHz,占空比为50%(CCR设置为50),分辨率为1%(受占空比变化影响)的PWM波形代码如下:

TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;
TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;
TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInitStructure.TIM_Period = 100 - 1;		//ARR
TIM_TimeBaseInitStructure.TIM_Prescaler = 720- 1;		//PSC
TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;
TIM_TimeBaseInit(TIM2, &TIM_TimeBaseInitStructure);

那如果我们设置频率为1KHz的话就会出现一个问题,就是这个电机会发出蜂鸣器的响声,在堵转的时候很明显。因为电机里面也是线圈和磁铁,所以在PWM的驱动下会发出蜂鸣器的声音,这是正常现象。那有什么办法可以避免呢?研究表明,人耳能听到的范围是20Hz到20KHz,那这样的话我们可以把频率调到人耳能接受的范围就可以了。

加大频率我们可以通过减小预分频器来完成,这样不会影响占空比。所以我们给这个预分频器去掉一个0,那就是10KHz了。再减半为36,那就是20KHz了。

那么输出频率为20KHz的PWM波形代码如下:

TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;
TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;
TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInitStructure.TIM_Period = 100 - 1;		//ARR
TIM_TimeBaseInitStructure.TIM_Prescaler = 36 - 1;		//PSC
TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;
TIM_TimeBaseInit(TIM2, &TIM_TimeBaseInitStructure);

4.1.3 配置输出比较单元

TIM_OCInitTypeDef TIM_OCInitStructure;
TIM_OCStructInit(&TIM_OCInitStructure);
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = 0;		//CCR
TIM_OC3Init(TIM2, &TIM_OCInitStructure);

4.1.4 配置GPIO

GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure);

4.1.5 运行控制

TIM_Cmd(TIM2, ENABLE);

4.2 PWM输出模块

void PWM_SetCompare3(uint16_t Compare)
{TIM_SetCompare3(TIM2, Compare);
}

4.3 电机模块

4.3.1 Motor初始化模块

void Motor_Init(void)
{RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 | GPIO_Pin_5;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);PWM_Init();
}

电机模块的初始化包括两个部分,分别是控制电机正反转的两个GPIO(PA4和PA5)以及PWM模块。

4.3.2 电机调速模块

void Motor_SetSpeed(int8_t Speed)
{if (Speed >= 0){GPIO_SetBits(GPIOA, GPIO_Pin_4);GPIO_ResetBits(GPIOA, GPIO_Pin_5);PWM_SetCompare3(Speed);}else{GPIO_ResetBits(GPIOA, GPIO_Pin_4);GPIO_SetBits(GPIOA, GPIO_Pin_5);PWM_SetCompare3(-Speed);}
}

GPIO_SetBits()和GPIO_ResetBits()用于设置电机正反转,PWM_SetCompare3函数用于设置电机速度。

在这里插入图片描述

4.4 主程序

主程序在while(1)主循环里通过获取按键按下的状态对电机进行调速,当速度超过100的时候反方向运行。

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "Motor.h"
#include "Key.h"uint8_t KeyNum;
int8_t Speed;int main(void)
{OLED_Init();Motor_Init();Key_Init();OLED_ShowString(1, 1, "Speed:");while (1){KeyNum = Key_GetNum();if (KeyNum == 1){Speed += 20;if (Speed > 100){Speed = -100;}}Motor_SetSpeed(Speed);OLED_ShowSignedNum(1, 7, Speed, 3);}
}

这篇关于TIM输出比较之PWM驱动直流电机应用案例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1101563

相关文章

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda

Java中&和&&以及|和||的区别、应用场景和代码示例

《Java中&和&&以及|和||的区别、应用场景和代码示例》:本文主要介绍Java中的逻辑运算符&、&&、|和||的区别,包括它们在布尔和整数类型上的应用,文中通过代码介绍的非常详细,需要的朋友可... 目录前言1. & 和 &&代码示例2. | 和 ||代码示例3. 为什么要使用 & 和 | 而不是总是使

Python循环缓冲区的应用详解

《Python循环缓冲区的应用详解》循环缓冲区是一个线性缓冲区,逻辑上被视为一个循环的结构,本文主要为大家介绍了Python中循环缓冲区的相关应用,有兴趣的小伙伴可以了解一下... 目录什么是循环缓冲区循环缓冲区的结构python中的循环缓冲区实现运行循环缓冲区循环缓冲区的优势应用案例Python中的实现库

SpringBoot整合MybatisPlus的基本应用指南

《SpringBoot整合MybatisPlus的基本应用指南》MyBatis-Plus,简称MP,是一个MyBatis的增强工具,在MyBatis的基础上只做增强不做改变,下面小编就来和大家介绍一下... 目录一、MyBATisPlus简介二、SpringBoot整合MybatisPlus1、创建数据库和

python中time模块的常用方法及应用详解

《python中time模块的常用方法及应用详解》在Python开发中,时间处理是绕不开的刚需场景,从性能计时到定时任务,从日志记录到数据同步,时间模块始终是开发者最得力的工具之一,本文将通过真实案例... 目录一、时间基石:time.time()典型场景:程序性能分析进阶技巧:结合上下文管理器实现自动计时

python多种数据类型输出为Excel文件

《python多种数据类型输出为Excel文件》本文主要介绍了将Python中的列表、元组、字典和集合等数据类型输出到Excel文件中,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录一.列表List二.字典dict三.集合set四.元组tuplepython中的列表、元组、字典

MySQL中实现多表查询的操作方法(配sql+实操图+案例巩固 通俗易懂版)

《MySQL中实现多表查询的操作方法(配sql+实操图+案例巩固通俗易懂版)》本文主要讲解了MySQL中的多表查询,包括子查询、笛卡尔积、自连接、多表查询的实现方法以及多列子查询等,通过实际例子和操... 目录复合查询1. 回顾查询基本操作group by 分组having1. 显示部门号为10的部门名,员

Java逻辑运算符之&&、|| 与&、 |的区别及应用

《Java逻辑运算符之&&、||与&、|的区别及应用》:本文主要介绍Java逻辑运算符之&&、||与&、|的区别及应用的相关资料,分别是&&、||与&、|,并探讨了它们在不同应用场景中... 目录前言一、基本概念与运算符介绍二、短路与与非短路与:&& 与 & 的区别1. &&:短路与(AND)2. &:非短