自己动手写SQL执行引擎

2024-08-24 00:18

本文主要是介绍自己动手写SQL执行引擎,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

自己动手写SQL执行引擎
前言
在阅读了大量关于数据库的资料后,笔者情不自禁产生了一个造数据库轮子的想法。来验证一下自己对于数据库底层原理的掌握是否牢靠。在笔者的github中给这个database起名为Freedom。

整体结构
在这里插入图片描述

既然造轮子,那当然得从前端的网络协议交互到后端的文件存储全部给撸一遍。下面是Freedom实现的整体结构,里面包含了实现的大致模块:

最终存储结构当然是使用经典的B+树结构。当然在B+树和文件系统block块之间的转换则通过Buffer(Page) Manager来进行。当然了,为了完成事务,还必须要用WAL协议,其通过Log Manager来操作。
Freedom采用的是索引组织表,通过DruidSQL Parse来将sql翻译为对应的索引操作符进而进行对应的语义操作。

MySQL Protocol结构
client/server之间的交互采用的是MySQL协议,这样很容易就可以和mysql client以及jdbc进行交互了。

query packet
mysql通过3byte的定长包头去进行分包,进而解决tcp流的读取问题。再通过一个sequenceId来再应用层判断packet是否连续。
在这里插入图片描述

result set packet
mysql协议部分最复杂的内容是其对于result set的读取,在NIO的方式下加重了复杂性。
Freedom通过设置一系列的读取状态可以比较好的在Netty框架下解决这一问题。
在这里插入图片描述

row packet
还有一个较简单的是对row格式进行读取,如上图所示,只需要按部就班的解析即可。

在这里插入图片描述

由于协议解析部分较为简单,在这里就不再赘述。

SQL Parse
Freedom采用成熟好用的Druid SQL Parse作为解析器。事实上,解析sql就是将用文本表示
的sql语义表示为一系列操作符(这里限于篇幅原因,仅仅给出select中where过滤的原理)。

在这里插入图片描述

当access层通过游标提供一系列row后,就可以通过这个树状表达式来过滤出符合where要求的数据。Druid采用了Parse中常用的visitor很方便的处理上面的表达式计算操作。

对join的处理
对join最简单处理方案就是对两张表进行笛卡尔积,然后通过上面的where condition进行过滤,如下图所示:
在这里插入图片描述

Freedom对于缩小笛卡尔积的处理
由于Freedom采用的是B+树作为底层存储结构,所以可以通过where谓词来界定B+树scan(搜索)的范围(也即最大搜索key和最小搜索key在B+树种中的位置)。考虑sql

select a.,b. from t_archer as a join t_rider as b where a.id>=3 and a.id<=11 and b.id>=19 and b.id<=31
那么就可以界定出在id这个索引上,a的scan范围为[3,11],如下图所示:
在这里插入图片描述

b的scan范围为[19,31],如下图所示(假设两张表数据一样,便于绘图):
在这里插入图片描述

scan少了从原来的1515(一共15个元素)次循环减少到44次循环,即循环次数减少到7.1%

当然如果存在join condition的话,那么Freedom在底层cursor递归处理的过程中会预先过滤掉一部分数据,进一步减少上层的过滤。

B+Tree的磁盘结构
leaf磁盘结构

Freedom的B+Tree是存储到磁盘里的。考虑到存储的限制以及不定长的key值,所以会变得非常复杂。Freedom以page为单位来和磁盘进行交互。叶子节点和非叶子节点都由page承载并刷入磁盘。结构如下所示:
在这里插入图片描述

一个元组(tuple/item)在一个page中分为定长的ItemPointer和不定长的Item两部分。
其中ItemPointer里面存储了对应item的起始偏移和长度。同时ItemPointer和Item如图所示是向着中心方向进行伸张,这种结构很有效的组织了非定长Item。

leaf和node节点在Page中的不同
虽然leaf和node在page中组织结构一致,但其item包含的项确有区别。由于Freedom采用的是索引组织表,所以对于leaf在聚簇索引(clusterIndex)和二级索引(secondaryIndex)中对item的表示也有区别,如下图所示:
在这里插入图片描述

其中在二级索引搜索时通过secondaryIndex通过index-key找到对应的clusterId,再通过
clusterId在clusterIndex中找到对应的row记录。
由于要落盘,所以Freedom在node节点中的item里面写入了index-key对应的pageno,
这样就可以容易的从磁盘恢复所有的索引结构了。

B+Tree在文件中的组织
有了Page结构,我们就可以将数据承载在一个个page大小的内存里面,同时还可以将page刷新到对应的文件里。有了node.item中的pageno,我们就可以较容易的进行文件和内存结构之间的互相映射了。
B+树在磁盘文件中的组织如下图所示:
在这里插入图片描述

B+树在内存中相对应的映射结构如下图所示:
在这里插入图片描述

文件page和内存page中的内容基本是一致的,除了一些内存page中特有的字段,例如dirty等。

每个索引一个B+树
在Freedom中,每个索引都是一颗B+树,对记录的插入和修改都要对所有的B+树进行操作。

B+Tree的测试
笔者通过一系列测试case,例如随机变长记录对B+树进行插入并落盘,修复了其中若干个非常诡异的corner case。

B+Tree的todo
笔者这里只是完成了最简单的B+树结构,没有给其添加并发修改的锁机制,也没有在B+树做操作的时候记录log来保证B+树在宕机等灾难性情况下的一致性,所以就算完成了这么多的工作量,距离一个高并发高可用的bptree还有非常大的距离。

Meta Data
table的元信息由create table所创建。创建之后会将元信息落盘,以便Freedom在重启的时候加载表信息。每张表的元信息只占用一页的空间,依旧复用page结构,主要保存的是聚簇索引和二级索引的信息。元信息对应的Item如下图所示:
在这里插入图片描述

如果想让mybatis可以自动生成关于Freedom的代码,还需实现一些特定的sql来展现Freedom的元信息。这个在笔者另一个项目rider中有这样的实现。原理如下图所示:
在这里插入图片描述

实现了上述4类SQL之后,mybatis-generator就可以通过jdbc从Freedom获取元信息进而自动生成代码了。

事务支持
由于当前Freedom并没有保证并发,所以对于事务的支持只做了最简单的WAL协议。通过记录redo/undolog从而实现原子性。

redo/undo log协议格式
Freedom在每做一个修改操作时,都会生成一条日志,其中记录了修改前(undo)和修改后(redo)的行信息,undo用来回滚,redo用来宕机recover。结构如下图所示:
在这里插入图片描述

WAL协议
WAL协议很好理解,就是在事务commit前将当前事务中所产生的的所有log记录刷入磁盘。
Freedom自然也做了这个操作,使得可以在宕机后通过log恢复出所有的数据。

在这里插入图片描述

回滚的实现
由于日志中记录了undo,所以对于一个事务的回滚直接通过日志进行undo即可。如下图所示:
在这里插入图片描述

宕机恢复
Freedom如果在page全部刷盘之后关机,则可以由通过加载page的方式获取原来的数据。
但如果突然宕机,例如kill -9之后,则可以通过WAL协议中记录的redo/undo log来重新
恢复所有的数据。由于时间和精力所限,笔者并没有实现基于LSN的检查点机制。

Freedom运行
git clone https://github.com/alchemystar/Freedom.git
// 并没有做打包部署的工作,所以最简单的方法是在java编辑器里面
run alchemystar.freedom.engine.server.main
以下是笔者实际运行Freedom的例子:
在这里插入图片描述

join查询
在这里插入图片描述

delete回滚
在这里插入图片描述

Freedom todo
Freedom还有很多工作没有完成,例如有层次的锁机制和MVCC等,由于工作忙起来就耽搁了。
于是笔者就看了看MySQL源码的实现理解了一下锁和MVCC实现原理,并写了两篇博客。比起
自己动手撸实在是轻松太多了_。

MVCC
https://my.oschina.net/alchemystar/blog/1927425

二阶段锁
https://my.oschina.net/alchemystar/blog/1438839

尾声
在造轮子的过程中一开始是非常有激情非常快乐的。但随着系统越来越庞大,复杂性越来越高,进度就会越来越慢,还时不时要推翻自己原来的设想并重新设计,然后再协同修改关联的所有代码,就如同泥沼,越陷越深。至此,笔者才领悟了软件工程最重要的其实是控制复杂度!始终保持简洁的接口和优雅的设计是实现一个大型系统的必要条件。
转自:https://www.cnblogs.com/alchemystar/p/13728544.html

这篇关于自己动手写SQL执行引擎的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1100904

相关文章

数据库面试必备之MySQL中的乐观锁与悲观锁

《数据库面试必备之MySQL中的乐观锁与悲观锁》:本文主要介绍数据库面试必备之MySQL中乐观锁与悲观锁的相关资料,乐观锁适用于读多写少的场景,通过版本号检查避免冲突,而悲观锁适用于写多读少且对数... 目录一、引言二、乐观锁(一)原理(二)应用场景(三)示例代码三、悲观锁(一)原理(二)应用场景(三)示例

SQL表间关联查询实例详解

《SQL表间关联查询实例详解》本文主要讲解SQL语句中常用的表间关联查询方式,包括:左连接(leftjoin)、右连接(rightjoin)、全连接(fulljoin)、内连接(innerjoin)、... 目录简介样例准备左外连接右外连接全外连接内连接交叉连接自然连接简介本文主要讲解SQL语句中常用的表

SQL server配置管理器找不到如何打开它

《SQLserver配置管理器找不到如何打开它》最近遇到了SQLserver配置管理器打不开的问题,尝试在开始菜单栏搜SQLServerManager无果,于是将自己找到的方法总结分享给大家,对SQ... 目录方法一:桌面图标进入方法二:运行窗口进入方法三:查找文件路径方法四:检查 SQL Server 安

MySQL 中的 LIMIT 语句及基本用法

《MySQL中的LIMIT语句及基本用法》LIMIT语句用于限制查询返回的行数,常用于分页查询或取部分数据,提高查询效率,:本文主要介绍MySQL中的LIMIT语句,需要的朋友可以参考下... 目录mysql 中的 LIMIT 语句1. LIMIT 语法2. LIMIT 基本用法(1) 获取前 N 行数据(

MySQL 分区与分库分表策略应用小结

《MySQL分区与分库分表策略应用小结》在大数据量、复杂查询和高并发的应用场景下,单一数据库往往难以满足性能和扩展性的要求,本文将详细介绍这两种策略的基本概念、实现方法及优缺点,并通过实际案例展示如... 目录mysql 分区与分库分表策略1. 数据库水平拆分的背景2. MySQL 分区策略2.1 分区概念

MySQL高级查询之JOIN、子查询、窗口函数实际案例

《MySQL高级查询之JOIN、子查询、窗口函数实际案例》:本文主要介绍MySQL高级查询之JOIN、子查询、窗口函数实际案例的相关资料,JOIN用于多表关联查询,子查询用于数据筛选和过滤,窗口函... 目录前言1. JOIN(连接查询)1.1 内连接(INNER JOIN)1.2 左连接(LEFT JOI

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

MySQL中动态生成SQL语句去掉所有字段的空格的操作方法

《MySQL中动态生成SQL语句去掉所有字段的空格的操作方法》在数据库管理过程中,我们常常会遇到需要对表中字段进行清洗和整理的情况,本文将详细介绍如何在MySQL中动态生成SQL语句来去掉所有字段的空... 目录在mysql中动态生成SQL语句去掉所有字段的空格准备工作原理分析动态生成SQL语句在MySQL

MySQL中FIND_IN_SET函数与INSTR函数用法解析

《MySQL中FIND_IN_SET函数与INSTR函数用法解析》:本文主要介绍MySQL中FIND_IN_SET函数与INSTR函数用法解析,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一... 目录一、功能定义与语法1、FIND_IN_SET函数2、INSTR函数二、本质区别对比三、实际场景案例分

MySQL中的交叉连接、自然连接和内连接查询详解

《MySQL中的交叉连接、自然连接和内连接查询详解》:本文主要介绍MySQL中的交叉连接、自然连接和内连接查询,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、引入二、交php叉连接(cross join)三、自然连接(naturalandroid join)四