07_LFM--梯度下降法--实现基于模型的协同过滤

2024-08-23 23:18

本文主要是介绍07_LFM--梯度下降法--实现基于模型的协同过滤,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

07_LFM--梯度下降法--实现基于模型的协同过滤

    • LFM--梯度下降法--实现基于模型的协同过滤
      • 0.引入依赖
      • 1.数据准备
      • 2.算法的实现
      • 3.测试

LFM–梯度下降法–实现基于模型的协同过滤

0.引入依赖

import numpy as np # 数值计算、矩阵运算、向量运算
import pandas as pd # 数值分析、科学计算

1.数据准备

# 定义评分矩阵 R
R = np.array([[4, 0, 2, 0, 1],[0, 2, 3, 0, 0],[1, 0, 2, 4, 0],[5, 0, 0, 3, 1],[0, 0, 1, 5, 1],[0, 3, 2, 4, 1],])
# R.shape # (6, 5)
# R.shape[0] # 6
# R.shape[1] # 5
# len(R) # 6
# len(R[0]) # 5

2.算法的实现

"""
@输入参数:
R:M*N 的评分矩阵
K:隐特征向量维度
max_iter: 最大迭代次数
alpha:步长
lamda:正则化系数@输出:
分解之后的 P,Q
P:初始化用户特征矩阵 M*K
Q:初始化物品特征矩阵 N*K,Q 的转置是 K*N
"""# 给定超参数
K = 5
max_iter = 5000
alpha = 0.0002
lamda = 0.004# 核心算法
def LMF_grad_desc(R, K=2, max_iter=1000, alpha=0.0001, lamda=0.002):# 定义基本维度参数M = len(R)N = len(R[0])# P、Q 的初始值随机生成P = np.random.rand(M, K)Q = np.random.rand(N, K)Q = Q.T# 开始迭代for steps in range(max_iter):# 对所有的用户 u,物品 i 做遍历,然后对对应的特征向量 Pu、Qi 做梯度下降for u in range(M):for i in range(N):# 对于每一个大于 0 的评分,求出预测评分误差 e_uiif R[u][i] > 0:e_ui = np.dot(P[u,:], Q[:,i]) - R[u][i]# 代入公式,按照梯度下降算法更新当前的 Pu、Qifor k in range(K):P[u][k] = P[u][k] - alpha * (2 * e_ui * Q[k][i] + 2 * lamda * P[u][k])Q[k][i] = Q[k][i] - alpha * (2 * e_ui * P[u][k] + 2 * lamda * Q[k][i])# u,i 遍历完成,所有的特征向量更新完成,可以得到 P、Q,可以计算预测评分矩阵predR = np.dot(P, Q)# 计算当前损失函数(所有的预测误差平方后求和)cost = 0for u in range(M):for i in range(N):# 对于每一个大于 0 的评分,求出预测评分误差后,将所有的预测误差平方后求和if R[u][i] > 0:cost += (np.dot(P[u,:], Q[:,i]) - R[u][i]) ** 2# 加上正则化项for k in range(K):cost += lamda * (P[u][k] ** 2 + Q[k][i] ** 2)if cost < 0.0001:# 当前损失函数小于给定的值,退出迭代breakreturn P, Q.T, cost

3.测试

P, Q, cost = LMF_grad_desc(R, K, max_iter, alpha, lamda)print(P)
print(Q)
print(cost)predR = P.dot(Q.T)print(R)
predR

当 K = 2 时,输出结果如下:

[[1.44372596 1.29573962][1.82185633 0.0158696 ][1.5331521  0.16327061][0.31364667 1.9008297 ][1.03622742 2.03603634][1.34107967 0.93406796]]
[[ 0.4501051   2.55477489][ 1.18869845  1.20910294][ 1.54255106 -0.23514326][ 2.33556583  1.21026575][ 0.43753164  0.34555928]]
1.0432768290554293
[[4 0 2 0 1][0 2 3 0 0][1 0 2 4 0][5 0 0 3 1][0 0 1 5 1][0 3 2 4 1]]array([[3.96015147, 3.2828374 , 1.92233657, 4.9401063 , 1.07943065],[0.86057008, 2.18482578, 2.80657478, 4.27427181, 0.80260368],[1.10719924, 2.0198665 , 2.32657341, 3.77837848, 0.72722223],[4.99736596, 2.6711301 , 0.03684871, 3.03305153, 0.79407969],[5.66802576, 3.69353946, 1.11967348, 4.8843224 , 1.15695354],[2.98996017, 2.72352365, 1.84904408, 4.2626503 , 0.90954065]])

当 K = 5 时,输出结果如下:


[[ 0.77991893  0.95803701  0.75945903  0.74581653  0.58070622][ 1.51777367  0.66949331  0.89818609  0.23566984  0.56583223][ 0.03567022  0.58391558  1.42477223  0.87262652 -0.52553017][ 1.24101793  0.86257736  0.73772417  0.18181617  0.97014545][ 0.58789616  0.53522492  0.48830352  1.80622908  0.81202167][ 1.08640318  0.87660384  0.68935314  0.84506882  0.92284071]]
[[ 1.64469428  1.10535565  0.56686066  0.38656745  1.56519511][ 0.61680687  0.57188343  0.49729111  0.9623455   0.43969708][ 0.99260822  0.6007452   1.14768173 -0.16998497 -0.14094479][ 0.47070988  0.85347655  1.43546859  1.8185161   0.29759968][ 0.07923314  0.49412497  0.53285806  0.23753882 -0.05146021]]
0.7478305665280703
[[4 0 2 0 1][0 2 3 0 0][1 0 2 4 0][5 0 0 3 1][0 0 1 5 1][0 3 2 4 1]]array([[3.9694342 , 2.37968507, 2.01268221, 3.8040546 , 1.08714641],[4.72218838, 2.2412959 , 2.81976984, 3.17210672, 0.95653992],[1.02652007, 1.67315396, 1.94711343, 3.99085212, 1.28488146],[5.0014878 , 2.22716585, 2.42906339, 2.99867943, 0.91091753],[3.80452512, 3.00679363, 1.04401937, 4.96078887, 0.95850804],[4.91762916, 2.73324389, 2.1224277 , 4.06049468, 1.03980543]])

这篇关于07_LFM--梯度下降法--实现基于模型的协同过滤的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1100771

相关文章

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

java父子线程之间实现共享传递数据

《java父子线程之间实现共享传递数据》本文介绍了Java中父子线程间共享传递数据的几种方法,包括ThreadLocal变量、并发集合和内存队列或消息队列,并提醒注意并发安全问题... 目录通过 ThreadLocal 变量共享数据通过并发集合共享数据通过内存队列或消息队列共享数据注意并发安全问题总结在 J

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

SpringBoot+MyBatis-Flex配置ProxySQL的实现步骤

《SpringBoot+MyBatis-Flex配置ProxySQL的实现步骤》本文主要介绍了SpringBoot+MyBatis-Flex配置ProxySQL的实现步骤,文中通过示例代码介绍的非常详... 目录 目标 步骤 1:确保 ProxySQL 和 mysql 主从同步已正确配置ProxySQL 的

JS 实现复制到剪贴板的几种方式小结

《JS实现复制到剪贴板的几种方式小结》本文主要介绍了JS实现复制到剪贴板的几种方式小结,包括ClipboardAPI和document.execCommand这两种方法,具有一定的参考价值,感兴趣的... 目录一、Clipboard API相关属性方法二、document.execCommand优点:缺点:

nginx部署https网站的实现步骤(亲测)

《nginx部署https网站的实现步骤(亲测)》本文详细介绍了使用Nginx在保持与http服务兼容的情况下部署HTTPS,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值... 目录步骤 1:安装 Nginx步骤 2:获取 SSL 证书步骤 3:手动配置 Nginx步骤 4:测

Idea实现接口的方法上无法添加@Override注解的解决方案

《Idea实现接口的方法上无法添加@Override注解的解决方案》文章介绍了在IDEA中实现接口方法时无法添加@Override注解的问题及其解决方法,主要步骤包括更改项目结构中的Languagel... 目录Idea实现接China编程口的方法上无法添加@javascriptOverride注解错误原因解决方