分享一个基于python的租房数据分析与可视化系统Hadoop大数据源码(源码、调试、LW、开题、PPT)

本文主要是介绍分享一个基于python的租房数据分析与可视化系统Hadoop大数据源码(源码、调试、LW、开题、PPT),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

💕💕作者:计算机源码社
💕💕个人简介:本人 八年开发经验,擅长Java、Python、PHP、.NET、Node.js、Android、微信小程序、爬虫、大数据、机器学习等,大家有这一块的问题可以一起交流!
💕💕学习资料、程序开发、技术解答、文档报告
💕💕如需要源码,可以扫取文章下方二维码联系咨询

💕💕Java项目
💕💕微信小程序项目
💕💕Android项目
💕💕Python项目
💕💕PHP项目
💕💕ASP.NET项目
💕💕Node.js项目
💕💕选题推荐

项目实战|python安居客租房数据分析与可系统hadoop

文章目录

  • 1、选题背景
  • 2、研究目的和意义
  • 3、系统功能设计
  • 4、系统页面设计
  • 5、参考文献
  • 6、核心代码

1、选题背景

  随着城市化进程的加速,租房市场逐渐成为许多人关注的焦点,尤其是在大中城市中,租房需求持续增长。然而,租房市场信息复杂,房源数量庞大且分布广泛,租房者在选择时往往面临信息不对称、价格不透明等问题。与此同时,互联网技术的发展使得大量租房信息可以通过网络获取,但这些信息往往分散且难以系统化利用。因此,利用现代技术手段对租房数据进行系统化采集、分析与展示,成为提升租房市场透明度和效率的迫切需求。

2、研究目的和意义

  租房数据分析与可视化系统的主要目的是通过构建一个基于Python、Flask和Echarts的综合性租房数据分析与可视化系统,实现对安居客网站上租房数据的自动化采集、处理和存储,并以直观、易懂的方式展示分析结果。通过本系统,用户能够清晰地看到房源价格、面积、楼层、地址、格局等关键信息的分布情况,帮助租房者做出更加明智的决策。同时,系统还提供了房屋信息管理、用户管理、个人信息管理等功能,进一步提升了用户在使用过程中的便利性和效率。

  租房数据分析与可视化系统的开发不仅能够为租房者提供强有力的市场数据支持,还可以为房地产中介公司和政策制定者提供详实的数据分析工具,帮助他们更好地理解市场动态,制定合理的营销策略和政策。通过数据的系统化管理与大屏可视化展示,系统显著提升了租房市场的信息透明度和数据利用效率,减少了信息不对称带来的决策风险。系统的开发过程也展示了如何将Python、Flask、Scrapy、MySQL和Echarts等技术集成应用于实际问题,为其他领域的类似研究提供了参考和借鉴。

3、系统功能设计

基于Python的租房数据分析与可视化系统的研究内容主要包括以下三个方面:

数据采集与预处理:本研究的首要任务是通过Scrapy爬虫技术从安居客网站获取大量的租房相关数据。爬取的数据将包括房源价格、房屋面积、楼层、地址、房屋格局、发布时间等关键信息。由于网络数据通常存在冗余、噪声和不一致的情况,研究内容将集中在如何提高爬虫的效率、确保数据的完整性和准确性。数据采集完成后,还需进行数据预处理,包括数据清洗、格式化、缺失值填补等,以保证数据的质量,为后续的数据分析提供可靠的基础。

数据存储与管理:研究的第二个内容是对采集到的租房数据进行存储和管理。选择MySQL作为数据存储的后台,将爬取和处理后的数据按照预定的数据库结构进行存储。研究将探讨如何设计适合的数据库结构,使得数据存储高效且便于后续查询。同时,研究内容还包括数据的增量更新策略,确保数据库中数据的实时性和完整性。为了满足系统在高并发环境下的稳定运行,研究将探索数据库的优化和性能调优方法。

数据分析与可视化:研究的核心部分在于如何利用Python和Echarts技术对租房数据进行分析和可视化展示。研究内容包括开发多维度的数据分析模块,如房源价格分布分析、房屋面积统计、楼层分布情况、地理位置分析、房屋格局分布以及租房市场趋势分析等。这些分析将以图表、地图和词云等多种可视化形式展现,帮助用户直观理解租房市场的各项指标。研究还将探讨如何在Flask框架下实现这些可视化组件的动态展示和交互功能,最终构建一个用户友好的租房数据分析与展示平台。

4、系统页面设计

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
如需要源码,可以扫取文章下方二维码联系咨询

5、参考文献

[1]周海伟.基于人脸识别大数据的杭州公租房违规行为特征分析与应用研究[J].科技通报,2022,38(09):41-46.DOI:10.13774/j.cnki.kjtb.2022.09.007.
[2]左铭书.基于数据挖掘的在线短租房销量影响因素分析[D].山东师范大学,2022. DOI:10.27280/d.cnki.gsdsu.2022.000414.
[3]李涛.基于Python的租房信息可视化及价格预测[J].现代信息科技,2021,5(16):96-99.DOI:10.19850/j.cnki.2096-4706.2021.16.024.
[4]武帅,张苗,夏换,等.K-Means聚类和时间序列的在线短租共享经济分析[J].信息技术与信息化,2021,(08):41-46.
[5]陈永俊,夏艳锋,高宇航,等.基于NLP技术的警情文本数据分析应用[J].警察技术,2021,(02):39-42.
[6]刘艾旺.基于电力营销大数据的用电客户精准营销[D].浙江大学,2021. DOI:10.27461/d.cnki.gzjdx.2021.002552.
[7]王慧东.数据挖掘技术在租房数据中的应用研究[D].昆明理工大学,2020. DOI:10.27200/d.cnki.gkmlu.2020.000952.
[8]岳福梅,郭欣,张丽坤,等.基于居民用水数据的实有人口估测算法[J].信息技术与信息化,2019,(08):86-89.
[9]大数据分析Airbnb租房[J].中国科技信息,2019,(13):8-9.
[10]郅臻.昆明勘测设计研究院职工宿舍管理系统的研究与分析[D].云南大学,2018.
[11]韩学伟.房产经纪人网络营销系统的设计与实现[D].山东大学,2018.
[12]黄文柱.三明学院公租房管理信息系统的研究与分析[D].云南大学,2017.
[13]罗腾.公共租赁住房管理系统的研究与分析[D].云南大学,2016.
[14]梅承茏.房产中介管理系统的研究与分析[D].云南大学,2016.
[15]王惠平.基于数据挖掘的公租房管理系统设计与实现[D].苏州大学,2016.
[16]秦欣欣.潍坊市住房保障管理系统的设计与实现[D].山东大学,2015.
[17]杨文碧.昆明市公共租赁住房管理信息系统的研究与分析[D].云南大学,2015.
[18]兰伟.房地产中介公司租房管理信息系统设计与实现[D].电子科技大学,2014.

6、核心代码

# # -*- coding: utf-8 -*-# 数据爬取文件import scrapy
import pymysql
import pymssql
from ..items import ZufangItem
import time
from datetime import datetime,timedelta
import datetime as formattime
import re
import random
import platform
import json
import os
import urllib
from urllib.parse import urlparse
import requests
import emoji
import numpy as np
import pandas as pd
from sqlalchemy import create_engine
from selenium.webdriver import ChromeOptions, ActionChains
from scrapy.http import TextResponse
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.support.wait import WebDriverWait
# 租房
class ZufangSpider(scrapy.Spider):name = 'zufangSpider'spiderUrl = 'https://m.anjuke.com/zufang/m/house/api_houselist_data_Jgs?page={}&search_firstpage=1&search_param=%7B%22city_id%22%3A3%2C%22platform%22%3A3%2C%22select_type%22%3A1%2C%22page_size%22%3A30%2C%22cityDomain%22%3A%22gz%22%2C%22cityListName%22%3A%22gz%22%2C%22sid%22%3A%22d0548cba8e891a9978f6c74d3fafb675%22%7D&font_encrypt='start_urls = spiderUrl.split(";")protocol = ''hostname = ''realtime = Falseheaders = {"Cookie":"输入自己的cookie"}def __init__(self,realtime=False,*args, **kwargs):super().__init__(*args, **kwargs)self.realtime = realtime=='true'def start_requests(self):plat = platform.system().lower()if not self.realtime and (plat == 'linux' or plat == 'windows'):connect = self.db_connect()cursor = connect.cursor()if self.table_exists(cursor, '9krj0476_zufang') == 1:cursor.close()connect.close()self.temp_data()returnpageNum = 1 + 1for url in self.start_urls:if '{}' in url:for page in range(1, pageNum):next_link = url.format(page)yield scrapy.Request(url=next_link,headers=self.headers,callback=self.parse)else:yield scrapy.Request(url=url,headers=self.headers,callback=self.parse)# 列表解析def parse(self, response):_url = urlparse(self.spiderUrl)self.protocol = _url.schemeself.hostname = _url.netlocplat = platform.system().lower()if not self.realtime and (plat == 'linux' or plat == 'windows'):connect = self.db_connect()cursor = connect.cursor()if self.table_exists(cursor, '9krj0476_zufang') == 1:cursor.close()connect.close()self.temp_data()returndata = json.loads(response.body)try:list = data["data"]["list"]except:passfor item in list:fields = ZufangItem()try:fields["title"] = str( item["property"]["base"]["title"])except:passtry:fields["photo"] = str( item["property"]["base"]["default_photo"])except:passtry:fields["postdate"] = str( item["property"]["base"]["post_date"])except:passtry:fields["renttype"] = str( item["property"]["base"]["rent_type"])except:passtry:fields["price"] = float( item["property"]["base"]["attribute"]["price"])except:passtry:fields["areanum"] = float( item["property"]["base"]["attribute"]["area_num"])except:passtry:fields["floor"] = int( item["property"]["base"]["attribute"]["floor"])except:passtry:fields["geju"] = str( item["property"]["base"]["attribute"]["room_num"]+"室"+item["property"]["base"]["attribute"]["toilet_num"]+"厅")except:passtry:fields["address"] = str( item["community"]["base"]["name"])except:passtry:fields["laiyuan"] = str("https://gz.zu.anjuke.com/fangyuan/"+str( item["property"]["base"]["house_id"]))except:passyield fields# 详情解析def detail_parse(self, response):fields = response.meta['fields']return fields# 数据清洗def pandas_filter(self):engine = create_engine('mysql+pymysql://root:123456@localhost/spider9krj0476?charset=UTF8MB4')df = pd.read_sql('select * from zufang limit 50', con = engine)# 重复数据过滤df.duplicated()df.drop_duplicates()#空数据过滤df.isnull()df.dropna()# 填充空数据df.fillna(value = '暂无')# 异常值过滤# 滤出 大于800 和 小于 100 的a = np.random.randint(0, 1000, size = 200)cond = (a<=800) & (a>=100)a[cond]# 过滤正态分布的异常值b = np.random.randn(100000)# 3σ过滤异常值,σ即是标准差cond = np.abs(b) > 3 * 1b[cond]# 正态分布数据df2 = pd.DataFrame(data = np.random.randn(10000,3))# 3σ过滤异常值,σ即是标准差cond = (df2 > 3*df2.std()).any(axis = 1)# 不满⾜条件的⾏索引index = df2[cond].index# 根据⾏索引,进⾏数据删除df2.drop(labels=index,axis = 0)# 去除多余html标签def remove_html(self, html):if html == None:return ''pattern = re.compile(r'<[^>]+>', re.S)return pattern.sub('', html).strip()# 数据库连接def db_connect(self):type = self.settings.get('TYPE', 'mysql')host = self.settings.get('HOST', 'localhost')port = int(self.settings.get('PORT', 3306))user = self.settings.get('USER', 'root')password = self.settings.get('PASSWORD', '123456')try:database = self.databaseNameexcept:database = self.settings.get('DATABASE', '')if type == 'mysql':connect = pymysql.connect(host=host, port=port, db=database, user=user, passwd=password, charset='utf8')else:connect = pymssql.connect(host=host, user=user, password=password, database=database)return connect# 断表是否存在def table_exists(self, cursor, table_name):cursor.execute("show tables;")tables = [cursor.fetchall()]table_list = re.findall('(\'.*?\')',str(tables))table_list = [re.sub("'",'',each) for each in table_list]if table_name in table_list:return 1else:return 0# 数据缓存源def temp_data(self):connect = self.db_connect()cursor = connect.cursor()sql = '''insert into `zufang`(id,title,photo,postdate,renttype,price,areanum,floor,geju,address,laiyuan)selectid,title,photo,postdate,renttype,price,areanum,floor,geju,address,laiyuanfrom `9krj0476_zufang`where(not exists (selectid,title,photo,postdate,renttype,price,areanum,floor,geju,address,laiyuanfrom `zufang` where`zufang`.id=`9krj0476_zufang`.id))'''cursor.execute(sql)connect.commit()connect.close()

💕💕作者:计算机源码社
💕💕个人简介:本人 八年开发经验,擅长Java、Python、PHP、.NET、Node.js、Android、微信小程序、爬虫、大数据、机器学习等,大家有这一块的问题可以一起交流!
💕💕学习资料、程序开发、技术解答、文档报告
💕💕如需要源码,可以扫取文章下方二维码联系咨询

这篇关于分享一个基于python的租房数据分析与可视化系统Hadoop大数据源码(源码、调试、LW、开题、PPT)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1100482

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD