本文主要是介绍测试NV GPU SM的时钟是否一致,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
测试NV GPU SM的时钟是否一致
- 操作步骤
测试NV GPU SM的时钟是否一致
操作步骤
tee sm_clock_benchmark.cu<<-'EOF'
#include <iostream>
#include <cuda_runtime.h>
#include <iostream>
#include <vector>
#include <stdio.h>
#include <assert.h>
#include <cstdio>
#include <cuda.h>#define CHECK_CUDA(call) \do { \cudaError_t err = call; \if (err != cudaSuccess) { \std::cerr << "CUDA error at " << __FILE__ << ":" << __LINE__; \std::cerr << " code=" << err << " (" << cudaGetErrorString(cudaGetLastError()) << ")" << std::endl; \} \} while (0)__global__ void kernel(unsigned long long*output_ts,unsigned int*output_smid) {int tid = threadIdx.x + blockIdx.x * blockDim.x;unsigned long long ts0=0;asm volatile ("mov.u64 %0, %clock64;" : "=l"(ts0) :: "memory");unsigned int smid;asm volatile("mov.u32 %0, %smid;" : "=r"(smid));if(tid%blockDim.x==0){output_ts[blockIdx.x]=ts0;output_smid[blockIdx.x]=smid;}
}int main(int argc,char *argv[])
{int deviceid=0;cudaSetDevice(deviceid); cudaDeviceProp deviceProp;cudaGetDeviceProperties(&deviceProp, deviceid);int maxThreadsPerBlock = deviceProp.maxThreadsPerBlock;int sharedMemoryPerBlock = deviceProp.sharedMemPerBlock;int maxBlocksPerMultiprocessor = deviceProp.maxBlocksPerMultiProcessor;int smCount = deviceProp.multiProcessorCount;std::cout << "Device name: " << deviceProp.name << std::endl;std::cout << "Max threads per block: " << maxThreadsPerBlock << std::endl;std::cout << "Shared memory per block: " << sharedMemoryPerBlock << " bytes" << std::endl;std::cout << "Max blocks per SM: " << maxBlocksPerMultiprocessor << std::endl;std::cout << "Number of SMs: " << smCount << std::endl;int block_size=smCount;int thread_block_size=maxThreadsPerBlock;int thread_size=thread_block_size*block_size;int data_size=sizeof(float)*thread_size;int ts_size=sizeof(unsigned long long)*thread_size;int smid_size=sizeof(int)*thread_size;unsigned long long* dev_output_ts=nullptr;unsigned int* dev_smid=nullptr;unsigned long long*host_output_ts=new unsigned long long[thread_size];;unsigned int* host_smid=new unsigned int[thread_size];CHECK_CUDA(cudaMalloc((void**)&dev_output_ts, ts_size));CHECK_CUDA(cudaMalloc((void**)&dev_smid, smid_size));CHECK_CUDA(cudaMemcpy(dev_output_ts,host_output_ts,ts_size,cudaMemcpyHostToDevice));CHECK_CUDA(cudaMemcpy(dev_smid,host_smid,smid_size,cudaMemcpyHostToDevice));printf("dev_output_ts:%p\n",dev_output_ts);printf("dev_smid:%p\n",dev_smid);cudaStream_t stream;cudaStreamCreate(&stream);cudaEvent_t start, stop;cudaEventCreate(&start);cudaEventCreate(&stop);for(int iter=0;iter<3;iter++){cudaEventRecord(start, stream); kernel<<<block_size, thread_block_size,sharedMemoryPerBlock,stream>>>(dev_output_ts,dev_smid); cudaEventRecord(stop, stream);CHECK_CUDA(cudaEventSynchronize(stop));float milliseconds = 0;cudaEventElapsedTime(&milliseconds, start, stop);printf("cudaEventElapsedTime:%d %.3f(milliseconds)\n",iter,milliseconds);CHECK_CUDA(cudaMemcpy(host_output_ts,dev_output_ts,ts_size,cudaMemcpyDeviceToHost));CHECK_CUDA(cudaMemcpy(host_smid,dev_smid,smid_size,cudaMemcpyDeviceToHost));unsigned long long _min=0;unsigned long long _max=0;for(int i=0;i<block_size;i++){if(_min==0) _min=host_output_ts[i];if(_max==0) _max=host_output_ts[i];if(host_output_ts[i]<_min){_min=host_output_ts[i];}if(host_output_ts[i]>_max){_max=host_output_ts[i];}printf("blockid:%04d ts:%lld smid:%d\n",i,host_output_ts[i],host_smid[i]);}unsigned long long diff=_max-_min;printf("_max-_min=%lld(cycles) %6.2f(sec)\n",diff,diff/(1.89*1e9)); }CHECK_CUDA(cudaFree(dev_smid));CHECK_CUDA(cudaFree(dev_output_ts));return 0;
}
EOF/usr/local/cuda/bin/nvcc -std=c++17 -arch=sm_86 -g -lineinfo -o sm_clock_benchmark sm_clock_benchmark.cu \-I /usr/local/cuda/include -L /usr/local/cuda/lib64 -lcuda
./sm_clock_benchmark
输出
cudaEventElapsedTime:2 0.006(milliseconds)
blockid:0000 ts:3642438400169 smid:0
blockid:0001 ts:3644393850856 smid:2
blockid:0002 ts:3646612108206 smid:4
blockid:0003 ts:3642438400201 smid:6
blockid:0004 ts:3644393850888 smid:8
blockid:0005 ts:3646612108190 smid:10
blockid:0006 ts:3642438400234 smid:12
blockid:0007 ts:3644393850921 smid:14
blockid:0008 ts:3646612108239 smid:16
blockid:0009 ts:3642438400184 smid:18
blockid:0010 ts:3644393850871 smid:20
blockid:0011 ts:3646612108221 smid:22
blockid:0012 ts:3642438400216 smid:24
blockid:0013 ts:3644393850903 smid:26
blockid:0014 ts:3642438400177 smid:1
blockid:0015 ts:3644393850864 smid:3
blockid:0016 ts:3646612108214 smid:5
blockid:0017 ts:3642438400209 smid:7
blockid:0018 ts:3644393850896 smid:9
blockid:0019 ts:3646612108198 smid:11
blockid:0020 ts:3642438400242 smid:13
blockid:0021 ts:3644393850929 smid:15
blockid:0022 ts:3646612108247 smid:17
blockid:0023 ts:3642438400192 smid:19
blockid:0024 ts:3644393850879 smid:21
blockid:0025 ts:3646612108229 smid:23
blockid:0026 ts:3642438400224 smid:25
blockid:0027 ts:3644393850911 smid:27
_max-_min=4173708078(cycles) 2.21(sec)
这篇关于测试NV GPU SM的时钟是否一致的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!