关于快速幂算法有效性的证明

2024-08-23 16:18
文章标签 算法 快速 证明 有效性

本文主要是介绍关于快速幂算法有效性的证明,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在读这篇文章之前,请确保已经完全明白二进制基础以及其他与本文相关的二进制的知识


  • 首先,假设我们要求3^{101},设a=3,b=101
  • 将b转化为二进制表示,则为:1100101
  • 通过二进制基础,我们知道:b=2^{0}+2^{2}+2^{5}+2^{6}=101101=2^{0}+2^{2}+2^{5}+2^{6}
  • 通过乘法原理,我们知道:3^{c}*3^{d}=3^{c+d}3^{c+d}=3^{c}*3^{d}
  • 因此,可以推出:3^{101}=3^{2^{0}}*3^{2^{2}}*3^{2^{5}}*3^{2^{6}}=3^{1}*3^{4}*3^{32}*3^{64}=3^{101}
  • 那么,我们想象一下:如果计算2^{x}(设x为任意数)的时间复杂度为O(1),则计算3^{101}的时间复杂度就成为了O(6),也就是O({log_{2}}^{101})
  • 也就是说,计算p^{n}的时间复杂度也就成为了O({log_{2}}^{n})

那么,接下来的问题就是:怎么将计算2^{x}的时间复杂度降为O(1).

我们的思路是:首先,我们回避掉直接计算2^{x}这个问题。因为在对一个数g进行右移的过程中,假设每次右移一位,则一共需要右移{log_{2}}^{g}次(如果不熟悉这里可以自己手写验证一下).那么,在将在指数右移的过程中加上递推即可完成快速幂的运算。

理论部分完毕,下面是具体实现。


#include<cstdio>
#include<iostream>
using namespace std;
int poww(int,int);
int main(){cout<<poww(2,101)<<endl;
}
int poww(int a,int b){int ans=1;while(b!=0){if(b&1){//如果目前b的最后一位为1ans*=a;//向结果赋值(递推的部分)(这里a直接加入了ans的运算)}a*=a;//(a间接加入ans的运算)这里会在文章下面解释b=b>>1;//指数右移一位}return ans;
}
//该代码仅作参考,由于2^101超过了int的范围,实际上无法输出最终结果(但在不超范围的情况下可以正常使用)

 因为乘法的时间复杂度是O(1),所以快速幂的时间复杂度O(logN)成立

这篇关于关于快速幂算法有效性的证明的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1099880

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

电脑桌面文件删除了怎么找回来?别急,快速恢复攻略在此

在日常使用电脑的过程中,我们经常会遇到这样的情况:一不小心,桌面上的某个重要文件被删除了。这时,大多数人可能会感到惊慌失措,不知所措。 其实,不必过于担心,因为有很多方法可以帮助我们找回被删除的桌面文件。下面,就让我们一起来了解一下这些恢复桌面文件的方法吧。 一、使用撤销操作 如果我们刚刚删除了桌面上的文件,并且还没有进行其他操作,那么可以尝试使用撤销操作来恢复文件。在键盘上同时按下“C

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int

hdu 4565 推倒公式+矩阵快速幂

题意 求下式的值: Sn=⌈ (a+b√)n⌉%m S_n = \lceil\ (a + \sqrt{b}) ^ n \rceil\% m 其中: 0<a,m<215 0< a, m < 2^{15} 0<b,n<231 0 < b, n < 2^{31} (a−1)2<b<a2 (a-1)^2< b < a^2 解析 令: An=(a+b√)n A_n = (a +