CAFFE- faster rcnn修改demo.py保存网络中间结果

2024-08-23 14:08

本文主要是介绍CAFFE- faster rcnn修改demo.py保存网络中间结果,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

faster rcnn用python版本 https://github.com/rbgirshick/py-faster-rcnn

以demo.py中默认网络VGG16.

原本demo.py地址https://github.com/rbgirshick/py-faster-rcnn/blob/master/tools/demo.py

图有点多,贴一个图的本分结果出来:


上图是原图,下面第一张是网络中命名为“conv1_1”的结果图;第二张是命名为“rpn_cls_prob_reshape”的结果图;第三张是“rpnoutput”的结果图

看一下我修改后的代码:

#!/usr/bin/env python# --------------------------------------------------------
# Faster R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick
# --------------------------------------------------------"""
Demo script showing detections in sample images.See README.md for installation instructions before running.
"""import _init_paths
from fast_rcnn.config import cfg
from fast_rcnn.test import im_detect
from fast_rcnn.nms_wrapper import nms
from utils.timer import Timer
import matplotlib.pyplot as plt
import numpy as np
import scipy.io as sio
import caffe, os, sys, cv2
import argparse
import mathCLASSES = ('__background__','aeroplane', 'bicycle', 'bird', 'boat','bottle', 'bus', 'car', 'cat', 'chair','cow', 'diningtable', 'dog', 'horse','motorbike', 'person', 'pottedplant','sheep', 'sofa', 'train', 'tvmonitor')NETS = {'vgg16': ('VGG16','VGG16_faster_rcnn_final.caffemodel'),'zf': ('ZF','ZF_faster_rcnn_final.caffemodel')}def vis_detections(im, class_name, dets, thresh=0.5):"""Draw detected bounding boxes."""inds = np.where(dets[:, -1] >= thresh)[0]if len(inds) == 0:returnim = im[:, :, (2, 1, 0)]fig, ax = plt.subplots(figsize=(12, 12))ax.imshow(im, aspect='equal')for i in inds:bbox = dets[i, :4]score = dets[i, -1]ax.add_patch(plt.Rectangle((bbox[0], bbox[1]),bbox[2] - bbox[0],bbox[3] - bbox[1], fill=False,edgecolor='red', linewidth=3.5))ax.text(bbox[0], bbox[1] - 2,'{:s} {:.3f}'.format(class_name, score),bbox=dict(facecolor='blue', alpha=0.5),fontsize=14, color='white')ax.set_title(('{} detections with ''p({} | box) >= {:.1f}').format(class_name, class_name,thresh),fontsize=14)plt.axis('off')plt.tight_layout()#plt.draw()
def save_feature_picture(data, name, image_name=None, padsize = 1, padval = 1):data = data[0]#print "data.shape1: ", data.shapen = int(np.ceil(np.sqrt(data.shape[0])))padding = ((0, n ** 2 - data.shape[0]), (0, 0), (0, padsize)) + ((0, 0),) * (data.ndim - 3)#print "padding: ", paddingdata = np.pad(data, padding, mode='constant', constant_values=(padval, padval))#print "data.shape2: ", data.shapedata = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1)))#print "data.shape3: ", data.shape, ndata = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:])#print "data.shape4: ", data.shapeplt.figure()plt.imshow(data,cmap='gray')plt.axis('off')#plt.show()if image_name == None:img_path = './data/feature_picture/' else:img_path = './data/feature_picture/' + image_name + "/"check_file(img_path)plt.savefig(img_path + name + ".jpg", dpi = 400, bbox_inches = "tight")
def check_file(path):if not os.path.exists(path):os.mkdir(path)
def demo(net, image_name):"""Detect object classes in an image using pre-computed object proposals."""# Load the demo imageim_file = os.path.join(cfg.DATA_DIR, 'demo', image_name)im = cv2.imread(im_file)# Detect all object classes and regress object boundstimer = Timer()timer.tic()scores, boxes = im_detect(net, im)for k, v in net.blobs.items():if k.find("conv")>-1 or k.find("pool")>-1 or k.find("rpn")>-1:save_feature_picture(v.data, k.replace("/", ""), image_name)#net.blobs["conv1_1"].data, "conv1_1") timer.toc()print ('Detection took {:.3f}s for ''{:d} object proposals').format(timer.total_time, boxes.shape[0])# Visualize detections for each classCONF_THRESH = 0.8NMS_THRESH = 0.3for cls_ind, cls in enumerate(CLASSES[1:]):cls_ind += 1 # because we skipped backgroundcls_boxes = boxes[:, 4*cls_ind:4*(cls_ind + 1)]cls_scores = scores[:, cls_ind]dets = np.hstack((cls_boxes,cls_scores[:, np.newaxis])).astype(np.float32)keep = nms(dets, NMS_THRESH)dets = dets[keep, :]vis_detections(im, cls, dets, thresh=CONF_THRESH)def parse_args():"""Parse input arguments."""parser = argparse.ArgumentParser(description='Faster R-CNN demo')parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]',default=0, type=int)parser.add_argument('--cpu', dest='cpu_mode',help='Use CPU mode (overrides --gpu)',action='store_true')parser.add_argument('--net', dest='demo_net', help='Network to use [vgg16]',choices=NETS.keys(), default='vgg16')args = parser.parse_args()return argsdef print_param(net):for k, v in net.blobs.items():print (k, v.data.shape)print ""for k, v in net.params.items():print (k, v[0].data.shape)  if __name__ == '__main__':cfg.TEST.HAS_RPN = True  # Use RPN for proposalsargs = parse_args()prototxt = os.path.join(cfg.MODELS_DIR, NETS[args.demo_net][0],'faster_rcnn_alt_opt', 'faster_rcnn_test.pt')#print "prototxt: ", prototxtcaffemodel = os.path.join(cfg.DATA_DIR, 'faster_rcnn_models',NETS[args.demo_net][1])if not os.path.isfile(caffemodel):raise IOError(('{:s} not found.\nDid you run ./data/script/''fetch_faster_rcnn_models.sh?').format(caffemodel))if args.cpu_mode:caffe.set_mode_cpu()else:caffe.set_mode_gpu()caffe.set_device(args.gpu_id)cfg.GPU_ID = args.gpu_idnet = caffe.Net(prototxt, caffemodel, caffe.TEST)#print_param(net)print '\n\nLoaded network {:s}'.format(caffemodel)# Warmup on a dummy imageim = 128 * np.ones((300, 500, 3), dtype=np.uint8)for i in xrange(2):_, _= im_detect(net, im)im_names = ['000456.jpg', '000542.jpg', '001150.jpg','001763.jpg', '004545.jpg']for im_name in im_names:print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'print 'Demo for data/demo/{}'.format(im_name)demo(net, im_name)#plt.show()
1.在data下手动创建“feature_picture”文件夹就可以替换原来的demo使用了。

2.上面代码主要添加方法是:save_feature_picture,它会对网络测试的某些阶段的数据处理然后保存。

3.某些阶段是因为:if k.find("conv")>-1 or k.find("pool")>-1 or k.find("rpn")>-1这行代码(110行),保证网络层name有这三个词的才会被保存,因为其他层无法用图片

保存,如全连接(参数已经是二维的了)等层。

4.放开174行print_param(net)的注释,就可以看到网络参数的输出。

5.执行的最终结果 是在data/feature_picture产生以图片名字为文件夹名字的文件夹,文件夹下有以网络每层name为名字的图片。

6.另外部分网络的层name中有非法字符不能作为图片名字,我在代码的111行只是把‘字符/’剔除掉了,所以建议网络名字不要又其他字符。

图片下载和代码下载方式:

git clone https://github.com/meihuakaile/faster-rcnn.git

这篇关于CAFFE- faster rcnn修改demo.py保存网络中间结果的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1099593

相关文章

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

修改若依框架Token的过期时间问题

《修改若依框架Token的过期时间问题》本文介绍了如何修改若依框架中Token的过期时间,通过修改`application.yml`文件中的配置来实现,默认单位为分钟,希望此经验对大家有所帮助,也欢迎... 目录修改若依框架Token的过期时间修改Token的过期时间关闭Token的过期时js间总结修改若依

MySQL修改密码的四种实现方式

《MySQL修改密码的四种实现方式》文章主要介绍了如何使用命令行工具修改MySQL密码,包括使用`setpassword`命令和`mysqladmin`命令,此外,还详细描述了忘记密码时的处理方法,包... 目录mysql修改密码四种方式一、set password命令二、使用mysqladmin三、修改u

使用C++将处理后的信号保存为PNG和TIFF格式

《使用C++将处理后的信号保存为PNG和TIFF格式》在信号处理领域,我们常常需要将处理结果以图像的形式保存下来,方便后续分析和展示,C++提供了多种库来处理图像数据,本文将介绍如何使用stb_ima... 目录1. PNG格式保存使用stb_imagephp_write库1.1 安装和包含库1.2 代码解

使用Python在Excel中插入、修改、提取和删除超链接

《使用Python在Excel中插入、修改、提取和删除超链接》超链接是Excel中的常用功能,通过点击超链接可以快速跳转到外部网站、本地文件或工作表中的特定单元格,有效提升数据访问的效率和用户体验,这... 目录引言使用工具python在Excel中插入超链接Python修改Excel中的超链接Python

vscode保存代码时自动eslint格式化图文教程

《vscode保存代码时自动eslint格式化图文教程》:本文主要介绍vscode保存代码时自动eslint格式化的相关资料,包括打开设置文件并复制特定内容,文中通过代码介绍的非常详细,需要的朋友... 目录1、点击设置2、选择远程--->点击右上角打开设置3、会弹出settings.json文件,将以下内

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex

python修改字符串值的三种方法

《python修改字符串值的三种方法》本文主要介绍了python修改字符串值的三种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录第一种方法:第二种方法:第三种方法:在python中,字符串对象是不可变类型,所以我们没办法直接

SSID究竟是什么? WiFi网络名称及工作方式解析

《SSID究竟是什么?WiFi网络名称及工作方式解析》SID可以看作是无线网络的名称,类似于有线网络中的网络名称或者路由器的名称,在无线网络中,设备通过SSID来识别和连接到特定的无线网络... 当提到 Wi-Fi 网络时,就避不开「SSID」这个术语。简单来说,SSID 就是 Wi-Fi 网络的名称。比如

Mysql8.0修改配置文件my.ini的坑及解决

《Mysql8.0修改配置文件my.ini的坑及解决》使用记事本直接编辑my.ini文件保存后,可能会导致MySQL无法启动,因为MySQL会以ANSI编码读取该文件,解决方法是使用Notepad++... 目录Myhttp://www.chinasem.cnsql8.0修改配置文件my.ini的坑出现的问题