CAFFE- faster rcnn修改demo.py保存网络中间结果

2024-08-23 14:08

本文主要是介绍CAFFE- faster rcnn修改demo.py保存网络中间结果,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

faster rcnn用python版本 https://github.com/rbgirshick/py-faster-rcnn

以demo.py中默认网络VGG16.

原本demo.py地址https://github.com/rbgirshick/py-faster-rcnn/blob/master/tools/demo.py

图有点多,贴一个图的本分结果出来:


上图是原图,下面第一张是网络中命名为“conv1_1”的结果图;第二张是命名为“rpn_cls_prob_reshape”的结果图;第三张是“rpnoutput”的结果图

看一下我修改后的代码:

#!/usr/bin/env python# --------------------------------------------------------
# Faster R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick
# --------------------------------------------------------"""
Demo script showing detections in sample images.See README.md for installation instructions before running.
"""import _init_paths
from fast_rcnn.config import cfg
from fast_rcnn.test import im_detect
from fast_rcnn.nms_wrapper import nms
from utils.timer import Timer
import matplotlib.pyplot as plt
import numpy as np
import scipy.io as sio
import caffe, os, sys, cv2
import argparse
import mathCLASSES = ('__background__','aeroplane', 'bicycle', 'bird', 'boat','bottle', 'bus', 'car', 'cat', 'chair','cow', 'diningtable', 'dog', 'horse','motorbike', 'person', 'pottedplant','sheep', 'sofa', 'train', 'tvmonitor')NETS = {'vgg16': ('VGG16','VGG16_faster_rcnn_final.caffemodel'),'zf': ('ZF','ZF_faster_rcnn_final.caffemodel')}def vis_detections(im, class_name, dets, thresh=0.5):"""Draw detected bounding boxes."""inds = np.where(dets[:, -1] >= thresh)[0]if len(inds) == 0:returnim = im[:, :, (2, 1, 0)]fig, ax = plt.subplots(figsize=(12, 12))ax.imshow(im, aspect='equal')for i in inds:bbox = dets[i, :4]score = dets[i, -1]ax.add_patch(plt.Rectangle((bbox[0], bbox[1]),bbox[2] - bbox[0],bbox[3] - bbox[1], fill=False,edgecolor='red', linewidth=3.5))ax.text(bbox[0], bbox[1] - 2,'{:s} {:.3f}'.format(class_name, score),bbox=dict(facecolor='blue', alpha=0.5),fontsize=14, color='white')ax.set_title(('{} detections with ''p({} | box) >= {:.1f}').format(class_name, class_name,thresh),fontsize=14)plt.axis('off')plt.tight_layout()#plt.draw()
def save_feature_picture(data, name, image_name=None, padsize = 1, padval = 1):data = data[0]#print "data.shape1: ", data.shapen = int(np.ceil(np.sqrt(data.shape[0])))padding = ((0, n ** 2 - data.shape[0]), (0, 0), (0, padsize)) + ((0, 0),) * (data.ndim - 3)#print "padding: ", paddingdata = np.pad(data, padding, mode='constant', constant_values=(padval, padval))#print "data.shape2: ", data.shapedata = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1)))#print "data.shape3: ", data.shape, ndata = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:])#print "data.shape4: ", data.shapeplt.figure()plt.imshow(data,cmap='gray')plt.axis('off')#plt.show()if image_name == None:img_path = './data/feature_picture/' else:img_path = './data/feature_picture/' + image_name + "/"check_file(img_path)plt.savefig(img_path + name + ".jpg", dpi = 400, bbox_inches = "tight")
def check_file(path):if not os.path.exists(path):os.mkdir(path)
def demo(net, image_name):"""Detect object classes in an image using pre-computed object proposals."""# Load the demo imageim_file = os.path.join(cfg.DATA_DIR, 'demo', image_name)im = cv2.imread(im_file)# Detect all object classes and regress object boundstimer = Timer()timer.tic()scores, boxes = im_detect(net, im)for k, v in net.blobs.items():if k.find("conv")>-1 or k.find("pool")>-1 or k.find("rpn")>-1:save_feature_picture(v.data, k.replace("/", ""), image_name)#net.blobs["conv1_1"].data, "conv1_1") timer.toc()print ('Detection took {:.3f}s for ''{:d} object proposals').format(timer.total_time, boxes.shape[0])# Visualize detections for each classCONF_THRESH = 0.8NMS_THRESH = 0.3for cls_ind, cls in enumerate(CLASSES[1:]):cls_ind += 1 # because we skipped backgroundcls_boxes = boxes[:, 4*cls_ind:4*(cls_ind + 1)]cls_scores = scores[:, cls_ind]dets = np.hstack((cls_boxes,cls_scores[:, np.newaxis])).astype(np.float32)keep = nms(dets, NMS_THRESH)dets = dets[keep, :]vis_detections(im, cls, dets, thresh=CONF_THRESH)def parse_args():"""Parse input arguments."""parser = argparse.ArgumentParser(description='Faster R-CNN demo')parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]',default=0, type=int)parser.add_argument('--cpu', dest='cpu_mode',help='Use CPU mode (overrides --gpu)',action='store_true')parser.add_argument('--net', dest='demo_net', help='Network to use [vgg16]',choices=NETS.keys(), default='vgg16')args = parser.parse_args()return argsdef print_param(net):for k, v in net.blobs.items():print (k, v.data.shape)print ""for k, v in net.params.items():print (k, v[0].data.shape)  if __name__ == '__main__':cfg.TEST.HAS_RPN = True  # Use RPN for proposalsargs = parse_args()prototxt = os.path.join(cfg.MODELS_DIR, NETS[args.demo_net][0],'faster_rcnn_alt_opt', 'faster_rcnn_test.pt')#print "prototxt: ", prototxtcaffemodel = os.path.join(cfg.DATA_DIR, 'faster_rcnn_models',NETS[args.demo_net][1])if not os.path.isfile(caffemodel):raise IOError(('{:s} not found.\nDid you run ./data/script/''fetch_faster_rcnn_models.sh?').format(caffemodel))if args.cpu_mode:caffe.set_mode_cpu()else:caffe.set_mode_gpu()caffe.set_device(args.gpu_id)cfg.GPU_ID = args.gpu_idnet = caffe.Net(prototxt, caffemodel, caffe.TEST)#print_param(net)print '\n\nLoaded network {:s}'.format(caffemodel)# Warmup on a dummy imageim = 128 * np.ones((300, 500, 3), dtype=np.uint8)for i in xrange(2):_, _= im_detect(net, im)im_names = ['000456.jpg', '000542.jpg', '001150.jpg','001763.jpg', '004545.jpg']for im_name in im_names:print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'print 'Demo for data/demo/{}'.format(im_name)demo(net, im_name)#plt.show()
1.在data下手动创建“feature_picture”文件夹就可以替换原来的demo使用了。

2.上面代码主要添加方法是:save_feature_picture,它会对网络测试的某些阶段的数据处理然后保存。

3.某些阶段是因为:if k.find("conv")>-1 or k.find("pool")>-1 or k.find("rpn")>-1这行代码(110行),保证网络层name有这三个词的才会被保存,因为其他层无法用图片

保存,如全连接(参数已经是二维的了)等层。

4.放开174行print_param(net)的注释,就可以看到网络参数的输出。

5.执行的最终结果 是在data/feature_picture产生以图片名字为文件夹名字的文件夹,文件夹下有以网络每层name为名字的图片。

6.另外部分网络的层name中有非法字符不能作为图片名字,我在代码的111行只是把‘字符/’剔除掉了,所以建议网络名字不要又其他字符。

图片下载和代码下载方式:

git clone https://github.com/meihuakaile/faster-rcnn.git

这篇关于CAFFE- faster rcnn修改demo.py保存网络中间结果的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1099593

相关文章

python修改字符串值的三种方法

《python修改字符串值的三种方法》本文主要介绍了python修改字符串值的三种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录第一种方法:第二种方法:第三种方法:在python中,字符串对象是不可变类型,所以我们没办法直接

SSID究竟是什么? WiFi网络名称及工作方式解析

《SSID究竟是什么?WiFi网络名称及工作方式解析》SID可以看作是无线网络的名称,类似于有线网络中的网络名称或者路由器的名称,在无线网络中,设备通过SSID来识别和连接到特定的无线网络... 当提到 Wi-Fi 网络时,就避不开「SSID」这个术语。简单来说,SSID 就是 Wi-Fi 网络的名称。比如

Mysql8.0修改配置文件my.ini的坑及解决

《Mysql8.0修改配置文件my.ini的坑及解决》使用记事本直接编辑my.ini文件保存后,可能会导致MySQL无法启动,因为MySQL会以ANSI编码读取该文件,解决方法是使用Notepad++... 目录Myhttp://www.chinasem.cnsql8.0修改配置文件my.ini的坑出现的问题

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor

ASIO网络调试助手之一:简介

多年前,写过几篇《Boost.Asio C++网络编程》的学习文章,一直没机会实践。最近项目中用到了Asio,于是抽空写了个网络调试助手。 开发环境: Win10 Qt5.12.6 + Asio(standalone) + spdlog 支持协议: UDP + TCP Client + TCP Server 独立的Asio(http://www.think-async.com)只包含了头文件,不依

poj 3181 网络流,建图。

题意: 农夫约翰为他的牛准备了F种食物和D种饮料。 每头牛都有各自喜欢的食物和饮料,而每种食物和饮料都只能分配给一头牛。 问最多能有多少头牛可以同时得到喜欢的食物和饮料。 解析: 由于要同时得到喜欢的食物和饮料,所以网络流建图的时候要把牛拆点了。 如下建图: s -> 食物 -> 牛1 -> 牛2 -> 饮料 -> t 所以分配一下点: s  =  0, 牛1= 1~

poj 3068 有流量限制的最小费用网络流

题意: m条有向边连接了n个仓库,每条边都有一定费用。 将两种危险品从0运到n-1,除了起点和终点外,危险品不能放在一起,也不能走相同的路径。 求最小的费用是多少。 解析: 抽象出一个源点s一个汇点t,源点与0相连,费用为0,容量为2。 汇点与n - 1相连,费用为0,容量为2。 每条边之间也相连,费用为每条边的费用,容量为1。 建图完毕之后,求一条流量为2的最小费用流就行了

poj 2112 网络流+二分

题意: k台挤奶机,c头牛,每台挤奶机可以挤m头牛。 现在给出每只牛到挤奶机的距离矩阵,求最小化牛的最大路程。 解析: 最大值最小化,最小值最大化,用二分来做。 先求出两点之间的最短距离。 然后二分匹配牛到挤奶机的最大路程,匹配中的判断是在这个最大路程下,是否牛的数量达到c只。 如何求牛的数量呢,用网络流来做。 从源点到牛引一条容量为1的边,然后挤奶机到汇点引一条容量为m的边