用Python解决优化问题_多目标规划遗传算法模板

2024-08-23 12:36

本文主要是介绍用Python解决优化问题_多目标规划遗传算法模板,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

NSGA2,即非支配排序遗传算法II(Nondominated Sorting Genetic Algorithm II),是一种用于解决多目标优化问题的遗传算法。NSGA-II算法基于Pareto最优概念,通过快速非支配排序和精英策略,有效地维护种群多样性并提高优化精度 。

NSGA-II算法的流程主要包括:
1. 初始种群的生成。
2. 对种群进行非支配排序和拥挤度计算。
3. 根据非支配等级和拥挤度从父代和子代合并的种群中选择个体组成新的父代种群。
4. 对新父代种群执行选择、交叉、变异操作生成子代种群。
5. 重复步骤2-4,直到满足结束条件 。

NSGA-II算法在多目标优化问题上表现出色,尤其适用于目标冲突显著、需要同时考虑多个性能指标的复杂系统优化 。它不仅提高了算法效率,而且通过精英策略和拥挤度方法有效保持了解的多样性和分布的均匀性。

一:例题背景

假设我们根据实际问题得到了如下数学模型

将上述信息组合起来,我们的多目标优化问题的数学模型可以表示为:

最小化:

f_{1}\left ( x\right ) = \sum \left ( x_{i}^{2} \right )

f_{2}\left ( x\right ) = \sum \left ( (x_{i}-1)^{2} \right )

约束条件

x_{1}+x_{2}\leqslant 1
-5 ≤ x_{1},x_{2}≤ 5

其中 x = [x_{1},x_{2}] 是决策变量向量。这个模型寻找在两个目标函数之间进行权衡的解,同时满足给定的约束条件。

通过使用多目标优化算法,如NSGA-II,我们可以找到一组帕累托最优解,这些解在两个目标之间进行了有效的权衡,并满足了所有的约束条件。这些解可以帮助汽车制造商做出更明智的设计决策。

二:多目标规划遗传算法的Python实现

Step1:导入所需的库

from pymoo.core.problem import ElementwiseProblem
from pymoo.algorithms.moo.nsga2 import NSGA2
from pymoo.operators.sampling.rnd import FloatRandomSampling
from pymoo.operators.crossover.sbx import SBX
from pymoo.operators.mutation.pm import PM
from pymoo.optimize import minimize
import numpy as np

这里导入了pymoo库中的一些核心组件,包括问题定义、算法、采样、交叉和变异操作,以及优化函数。还导入了numpy库用于数学运算。若还没有安装pymoo库的可以在Python环境下执行安装:

pip install -U pymoo

Step2:定义优化问题:

class MyProblem(ElementwiseProblem):def __init__(self):super().__init__(n_var=2, n_obj=2, n_constr=1, xl=-5, xu=5)def _evaluate(self, x, out, *args, **kwargs):f1 = -np.sum(np.power(x, 2))f2 = -np.sum(np.power(x - 1, 2))out["F"] = [f1, f2]# 添加约束条件:x[0] + x[1] >= 1g1 = 1 - (x[0] + x[1])out["G"] = [g1]

这段代码定义了一个名为MyProblem的类,它继承自ElementwiseProblem。这个类定义了一个有两个变量和两个目标函数的问题。

  • __init__方法初始化问题,设定变量数量n_var为2,目标函数数量n_obj也为2,变量的下界xl和上界xu分别为-5和5。添加了n_constr=1参数,表示问题有一个约束条件。
  • _evaluate方法用于计算目标函数值。对于给定的变量x,它计算两个目标函数:
    • f1是变量x的平方和的负值。
    • f2是变量x与1的差的平方和的负值。
    • 添加了一个新的变量g1来表示约束条件x[0] + x[1] >= 1。这里我们计算1 - (x[0] + x[1]),如果x[0] + x[1] >= 1,则g1将小于或等于0,这表示约束被满足。如果不等式不成立,g1将大于0,表示约束未被满足。

Step3:实例化问题

problem = MyProblem()

这里创建了一个MyProblem类的实例。

Step4:定义算法

algorithm = NSGA2(pop_size=100, sampling=FloatRandomSampling(), crossover=SBX(prob=0.9, eta=15), mutation=PM(eta=20))

这里定义了使用NSGA2(非支配排序遗传算法II)算法进行优化。参数包括:

  • pop_size:种群大小,这里设置为100。
  • sampling:采样策略,这里使用FloatRandomSampling进行随机采样。
  • crossover:交叉操作,这里使用模拟二进制交叉(SBX),交叉概率为0.9,分布指数为15。
  • mutation:变异操作,这里使用多项式变异(PM),分布指数为20。

Step5:运行优化

res = minimize(problem, algorithm, ('n_gen', 150), verbose=True)

使用minimize函数运行优化过程。参数包括:

  • problem:要解决的问题。
  • algorithm:使用的算法。
  • ('n_gen', 150):算法迭代的代数,这里设置为150代。
  • verbose=True:设置为True以输出优化过程的详细信息。

Step6:打印结果

print(res.X)
print(-res.F)

结果如下:

具体结果含义为:

在pymoo库中,优化结果`res`是一个包含多种信息的对象。`res.X`和`res.F`是该对象中的两个属性,res.X`是决策变量的Pareto最优解集。`res.F`是与`res.X`中的每个解相对应的目标函数值集。
`-res.F`是`res.F`的取反,用于将最小化问题的目标函数值转换为最大化问题,便于分析Pareto前沿。具体含义如下:
res.X
`res.X`代表优化过程中找到的Pareto最优解集(Pareto set)。这个解集中的每个解都是一个决策变量向量,表示在优化过程中找到的满足特定条件(例如,不被其他解支配)的解。在多目标优化问题中,一个解可能无法在所有目标上都优于其他解,但Pareto最优解集包含了那些在至少一个目标上无法被其他解支配的解。
具体来说,`res.X`是一个二维数组,其中每一行代表一个Pareto最优解,每一列代表一个决策变量。对于本例中的问题,因为`n_var=2`,所以每个解都是一个包含两个元素的向量。
res.F
`res.F`代表Pareto最优解对应的目标函数值集(Pareto front)。这个集合包含了每个Pareto最优解对应的目标函数值。与`res.X`中的每个解相对应,`res.F`中的每一行代表一个Pareto最优解的目标函数值。
同样,`res.F`是一个二维数组,其中每一行代表一个Pareto最优解的目标函数值,每一列代表一个目标函数。在本例中,因为`n_obj=2`,所以每个解的目标函数值也是一个包含两个元素的向量。
 -res.F
在打印结果时,使用了`-res.F`。这是因为在本例中定义的目标函数是求最小值,即目标函数值越小越好。然而,在绘制Pareto前沿或分析Pareto最优解时,通常希望看到目标函数值的最大值,因为Pareto前沿图通常是用来展示在各个目标之间如何权衡。
 

以上就是多目标规划遗传算法的一个Python实现数学模型案例。

点下关注,分享更多有关AI,数据分析和量化金融的实用教程和实战项目。

这篇关于用Python解决优化问题_多目标规划遗传算法模板的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1099392

相关文章

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

SQL Server配置管理器无法打开的四种解决方法

《SQLServer配置管理器无法打开的四种解决方法》本文总结了SQLServer配置管理器无法打开的四种解决方法,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录方法一:桌面图标进入方法二:运行窗口进入检查版本号对照表php方法三:查找文件路径方法四:检查 S

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os