用Python解决优化问题_多目标规划遗传算法模板

2024-08-23 12:36

本文主要是介绍用Python解决优化问题_多目标规划遗传算法模板,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

NSGA2,即非支配排序遗传算法II(Nondominated Sorting Genetic Algorithm II),是一种用于解决多目标优化问题的遗传算法。NSGA-II算法基于Pareto最优概念,通过快速非支配排序和精英策略,有效地维护种群多样性并提高优化精度 。

NSGA-II算法的流程主要包括:
1. 初始种群的生成。
2. 对种群进行非支配排序和拥挤度计算。
3. 根据非支配等级和拥挤度从父代和子代合并的种群中选择个体组成新的父代种群。
4. 对新父代种群执行选择、交叉、变异操作生成子代种群。
5. 重复步骤2-4,直到满足结束条件 。

NSGA-II算法在多目标优化问题上表现出色,尤其适用于目标冲突显著、需要同时考虑多个性能指标的复杂系统优化 。它不仅提高了算法效率,而且通过精英策略和拥挤度方法有效保持了解的多样性和分布的均匀性。

一:例题背景

假设我们根据实际问题得到了如下数学模型

将上述信息组合起来,我们的多目标优化问题的数学模型可以表示为:

最小化:

f_{1}\left ( x\right ) = \sum \left ( x_{i}^{2} \right )

f_{2}\left ( x\right ) = \sum \left ( (x_{i}-1)^{2} \right )

约束条件

x_{1}+x_{2}\leqslant 1
-5 ≤ x_{1},x_{2}≤ 5

其中 x = [x_{1},x_{2}] 是决策变量向量。这个模型寻找在两个目标函数之间进行权衡的解,同时满足给定的约束条件。

通过使用多目标优化算法,如NSGA-II,我们可以找到一组帕累托最优解,这些解在两个目标之间进行了有效的权衡,并满足了所有的约束条件。这些解可以帮助汽车制造商做出更明智的设计决策。

二:多目标规划遗传算法的Python实现

Step1:导入所需的库

from pymoo.core.problem import ElementwiseProblem
from pymoo.algorithms.moo.nsga2 import NSGA2
from pymoo.operators.sampling.rnd import FloatRandomSampling
from pymoo.operators.crossover.sbx import SBX
from pymoo.operators.mutation.pm import PM
from pymoo.optimize import minimize
import numpy as np

这里导入了pymoo库中的一些核心组件,包括问题定义、算法、采样、交叉和变异操作,以及优化函数。还导入了numpy库用于数学运算。若还没有安装pymoo库的可以在Python环境下执行安装:

pip install -U pymoo

Step2:定义优化问题:

class MyProblem(ElementwiseProblem):def __init__(self):super().__init__(n_var=2, n_obj=2, n_constr=1, xl=-5, xu=5)def _evaluate(self, x, out, *args, **kwargs):f1 = -np.sum(np.power(x, 2))f2 = -np.sum(np.power(x - 1, 2))out["F"] = [f1, f2]# 添加约束条件:x[0] + x[1] >= 1g1 = 1 - (x[0] + x[1])out["G"] = [g1]

这段代码定义了一个名为MyProblem的类,它继承自ElementwiseProblem。这个类定义了一个有两个变量和两个目标函数的问题。

  • __init__方法初始化问题,设定变量数量n_var为2,目标函数数量n_obj也为2,变量的下界xl和上界xu分别为-5和5。添加了n_constr=1参数,表示问题有一个约束条件。
  • _evaluate方法用于计算目标函数值。对于给定的变量x,它计算两个目标函数:
    • f1是变量x的平方和的负值。
    • f2是变量x与1的差的平方和的负值。
    • 添加了一个新的变量g1来表示约束条件x[0] + x[1] >= 1。这里我们计算1 - (x[0] + x[1]),如果x[0] + x[1] >= 1,则g1将小于或等于0,这表示约束被满足。如果不等式不成立,g1将大于0,表示约束未被满足。

Step3:实例化问题

problem = MyProblem()

这里创建了一个MyProblem类的实例。

Step4:定义算法

algorithm = NSGA2(pop_size=100, sampling=FloatRandomSampling(), crossover=SBX(prob=0.9, eta=15), mutation=PM(eta=20))

这里定义了使用NSGA2(非支配排序遗传算法II)算法进行优化。参数包括:

  • pop_size:种群大小,这里设置为100。
  • sampling:采样策略,这里使用FloatRandomSampling进行随机采样。
  • crossover:交叉操作,这里使用模拟二进制交叉(SBX),交叉概率为0.9,分布指数为15。
  • mutation:变异操作,这里使用多项式变异(PM),分布指数为20。

Step5:运行优化

res = minimize(problem, algorithm, ('n_gen', 150), verbose=True)

使用minimize函数运行优化过程。参数包括:

  • problem:要解决的问题。
  • algorithm:使用的算法。
  • ('n_gen', 150):算法迭代的代数,这里设置为150代。
  • verbose=True:设置为True以输出优化过程的详细信息。

Step6:打印结果

print(res.X)
print(-res.F)

结果如下:

具体结果含义为:

在pymoo库中,优化结果`res`是一个包含多种信息的对象。`res.X`和`res.F`是该对象中的两个属性,res.X`是决策变量的Pareto最优解集。`res.F`是与`res.X`中的每个解相对应的目标函数值集。
`-res.F`是`res.F`的取反,用于将最小化问题的目标函数值转换为最大化问题,便于分析Pareto前沿。具体含义如下:
res.X
`res.X`代表优化过程中找到的Pareto最优解集(Pareto set)。这个解集中的每个解都是一个决策变量向量,表示在优化过程中找到的满足特定条件(例如,不被其他解支配)的解。在多目标优化问题中,一个解可能无法在所有目标上都优于其他解,但Pareto最优解集包含了那些在至少一个目标上无法被其他解支配的解。
具体来说,`res.X`是一个二维数组,其中每一行代表一个Pareto最优解,每一列代表一个决策变量。对于本例中的问题,因为`n_var=2`,所以每个解都是一个包含两个元素的向量。
res.F
`res.F`代表Pareto最优解对应的目标函数值集(Pareto front)。这个集合包含了每个Pareto最优解对应的目标函数值。与`res.X`中的每个解相对应,`res.F`中的每一行代表一个Pareto最优解的目标函数值。
同样,`res.F`是一个二维数组,其中每一行代表一个Pareto最优解的目标函数值,每一列代表一个目标函数。在本例中,因为`n_obj=2`,所以每个解的目标函数值也是一个包含两个元素的向量。
 -res.F
在打印结果时,使用了`-res.F`。这是因为在本例中定义的目标函数是求最小值,即目标函数值越小越好。然而,在绘制Pareto前沿或分析Pareto最优解时,通常希望看到目标函数值的最大值,因为Pareto前沿图通常是用来展示在各个目标之间如何权衡。
 

以上就是多目标规划遗传算法的一个Python实现数学模型案例。

点下关注,分享更多有关AI,数据分析和量化金融的实用教程和实战项目。

这篇关于用Python解决优化问题_多目标规划遗传算法模板的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1099392

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

IDEA编译报错“java: 常量字符串过长”的原因及解决方法

《IDEA编译报错“java:常量字符串过长”的原因及解决方法》今天在开发过程中,由于尝试将一个文件的Base64字符串设置为常量,结果导致IDEA编译的时候出现了如下报错java:常量字符串过长,... 目录一、问题描述二、问题原因2.1 理论角度2.2 源码角度三、解决方案解决方案①:StringBui

mybatis和mybatis-plus设置值为null不起作用问题及解决

《mybatis和mybatis-plus设置值为null不起作用问题及解决》Mybatis-Plus的FieldStrategy主要用于控制新增、更新和查询时对空值的处理策略,通过配置不同的策略类型... 目录MyBATis-plusFieldStrategy作用FieldStrategy类型每种策略的作

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了