基于Python的机器学习系列(10):朴素贝叶斯 - 多项式模型

2024-08-23 11:12

本文主要是介绍基于Python的机器学习系列(10):朴素贝叶斯 - 多项式模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        在之前的文章中,我们已经探讨了朴素贝叶斯分类器在不同情况下的应用。本文将继续深入探讨,重点介绍朴素贝叶斯分类器中的多项式模型。

1. 背景介绍

        朴素贝叶斯分类器是一种基于贝叶斯定理的简单却强大的分类算法。在之前的文章中,我们介绍了高斯朴素贝叶斯模型,它假设特征服从高斯分布。然而,对于一些特定类型的数据,例如词频或计数数据,高斯分布并不是最合适的选择。这时,我们可以使用多项式朴素贝叶斯模型,它假设特征值来自多项分布,特别适用于文本分类问题。

        多项式朴素贝叶斯模型通常用于处理与文档分类相关的问题,在这些问题中,特征值(例如单词计数或频率)以类别为条件生成。贝叶斯定理告诉我们如何将这些信息转化为对某一类别的概率估计,公式如下:

        其中,P(y|w)是后验概率,P(w|y)是给定类别下词频的条件概率,P(y)是先验概率,P(w)是证据。

2. 实现步骤
  1. 准备数据
    将数据集转换为适合多项式朴素贝叶斯模型的格式,通常是词频矩阵。

  2. 计算条件概率
    对于每一个单词,根据其在训练集中不同类别下的出现频率,计算其条件概率。这些条件概率用于评估新数据属于每一个类别的可能性。

  3. 拉普拉斯平滑
    为了防止零概率问题,我们对所有条件概率进行拉普拉斯平滑。

  4. 计算先验概率
    先验概率是训练集中每个类别的样本数量占总样本数量的比例。

  5. 预测新数据的类别
    使用测试数据中的词频矩阵计算每个类别的后验概率,并选择概率最大的类别作为预测结果。

3. 代码实现
import numpy as np
import matplotlib.pyplot as plt
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, average_precision_score# 模拟数据集
train = np.array(['Chinese Beijing Chinese','Chinese Chinese Shanghai','Chinese Macao','Tokyo Japan Chinese',
])
test = np.array(['Chinese Chinese Chinese Tokyo Japan'
])
train_target = np.array([1, 1, 1, 0])# 文本向量化
vectorizer = CountVectorizer()
X_train = vectorizer.fit_transform(train)
X_test = vectorizer.transform(test)# 条件概率计算
def likelihood(X_class, laplace=1):return ((X_class.sum(axis=0)) + laplace) / (np.sum(X_class.sum(axis=0) + laplace))X_train_class1 = X_train[train_target == 1]
X_train_class0 = X_train[train_target == 0]
likelihood1 = likelihood(X_train_class1)
likelihood0 = likelihood(X_train_class0)# 先验概率计算
prior1 = len(train_target[train_target==1])/len(train_target)
prior0 = len(train_target[train_target==0])/len(train_target)# 预测测试数据
pxtest_y1 = np.prod(np.power(likelihood1, X_test.toarray()))
pxtest_y0 = np.prod(np.power(likelihood0, X_test.toarray()))
py1_x = prior1 * pxtest_y1
py0_x = prior0 * pxtest_y0# 输出结果
yhat = 1 * (py1_x > py0_x)
print("预测结果: ", yhat)
4. 使用Sklearn实现多项式朴素贝叶斯

        虽然我们已经从头实现了多项式朴素贝叶斯分类器,但在实际应用中,通常使用现有的库来提高开发效率。Scikit-Learn中的MultinomialNB类正是为此设计的。

from sklearn.naive_bayes import MultinomialNBmodel = MultinomialNB()
model.fit(X_train, train_target)
yhat = model.predict(X_test)
print("预测结果: ", yhat)
5. 结语

        朴素贝叶斯分类器由于其简洁和高效,通常作为基线模型使用。虽然其假设相对严格,但在许多实际应用中,尤其是文本分类任务中,表现依然非常出色。与高斯朴素贝叶斯不同,多项式朴素贝叶斯适用于离散特征数据(如词频矩阵),且在处理大规模文本数据时非常高效。

        下一篇文章中,我们将探讨另一种常见的分类算法——K-Nearest Neighbors。

如果你觉得这篇博文对你有帮助,请点赞、收藏、关注我,并且可以打赏支持我!

欢迎关注我的后续博文,我将分享更多关于人工智能、自然语言处理和计算机视觉的精彩内容。

谢谢大家的支持!

这篇关于基于Python的机器学习系列(10):朴素贝叶斯 - 多项式模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1099213

相关文章

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

Python中的getopt模块用法小结

《Python中的getopt模块用法小结》getopt.getopt()函数是Python中用于解析命令行参数的标准库函数,该函数可以从命令行中提取选项和参数,并对它们进行处理,本文详细介绍了Pyt... 目录getopt模块介绍getopt.getopt函数的介绍getopt模块的常用用法getopt模

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Python如何精准判断某个进程是否在运行

《Python如何精准判断某个进程是否在运行》这篇文章主要为大家详细介绍了Python如何精准判断某个进程是否在运行,本文为大家整理了3种方法并进行了对比,有需要的小伙伴可以跟随小编一起学习一下... 目录一、为什么需要判断进程是否存在二、方法1:用psutil库(推荐)三、方法2:用os.system调用

使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)

《使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)》PPT是一种高效的信息展示工具,广泛应用于教育、商务和设计等多个领域,PPT文档中常常包含丰富的图片内容,这些图片不仅提升了... 目录一、引言二、环境与工具三、python 提取PPT背景图片3.1 提取幻灯片背景图片3.2 提取

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

一文带你搞懂Python中__init__.py到底是什么

《一文带你搞懂Python中__init__.py到底是什么》朋友们,今天我们来聊聊Python里一个低调却至关重要的文件——__init__.py,有些人可能听说过它是“包的标志”,也有人觉得它“没... 目录先搞懂 python 模块(module)Python 包(package)是啥?那么 __in