基于Python的机器学习系列(10):朴素贝叶斯 - 多项式模型

2024-08-23 11:12

本文主要是介绍基于Python的机器学习系列(10):朴素贝叶斯 - 多项式模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        在之前的文章中,我们已经探讨了朴素贝叶斯分类器在不同情况下的应用。本文将继续深入探讨,重点介绍朴素贝叶斯分类器中的多项式模型。

1. 背景介绍

        朴素贝叶斯分类器是一种基于贝叶斯定理的简单却强大的分类算法。在之前的文章中,我们介绍了高斯朴素贝叶斯模型,它假设特征服从高斯分布。然而,对于一些特定类型的数据,例如词频或计数数据,高斯分布并不是最合适的选择。这时,我们可以使用多项式朴素贝叶斯模型,它假设特征值来自多项分布,特别适用于文本分类问题。

        多项式朴素贝叶斯模型通常用于处理与文档分类相关的问题,在这些问题中,特征值(例如单词计数或频率)以类别为条件生成。贝叶斯定理告诉我们如何将这些信息转化为对某一类别的概率估计,公式如下:

        其中,P(y|w)是后验概率,P(w|y)是给定类别下词频的条件概率,P(y)是先验概率,P(w)是证据。

2. 实现步骤
  1. 准备数据
    将数据集转换为适合多项式朴素贝叶斯模型的格式,通常是词频矩阵。

  2. 计算条件概率
    对于每一个单词,根据其在训练集中不同类别下的出现频率,计算其条件概率。这些条件概率用于评估新数据属于每一个类别的可能性。

  3. 拉普拉斯平滑
    为了防止零概率问题,我们对所有条件概率进行拉普拉斯平滑。

  4. 计算先验概率
    先验概率是训练集中每个类别的样本数量占总样本数量的比例。

  5. 预测新数据的类别
    使用测试数据中的词频矩阵计算每个类别的后验概率,并选择概率最大的类别作为预测结果。

3. 代码实现
import numpy as np
import matplotlib.pyplot as plt
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, average_precision_score# 模拟数据集
train = np.array(['Chinese Beijing Chinese','Chinese Chinese Shanghai','Chinese Macao','Tokyo Japan Chinese',
])
test = np.array(['Chinese Chinese Chinese Tokyo Japan'
])
train_target = np.array([1, 1, 1, 0])# 文本向量化
vectorizer = CountVectorizer()
X_train = vectorizer.fit_transform(train)
X_test = vectorizer.transform(test)# 条件概率计算
def likelihood(X_class, laplace=1):return ((X_class.sum(axis=0)) + laplace) / (np.sum(X_class.sum(axis=0) + laplace))X_train_class1 = X_train[train_target == 1]
X_train_class0 = X_train[train_target == 0]
likelihood1 = likelihood(X_train_class1)
likelihood0 = likelihood(X_train_class0)# 先验概率计算
prior1 = len(train_target[train_target==1])/len(train_target)
prior0 = len(train_target[train_target==0])/len(train_target)# 预测测试数据
pxtest_y1 = np.prod(np.power(likelihood1, X_test.toarray()))
pxtest_y0 = np.prod(np.power(likelihood0, X_test.toarray()))
py1_x = prior1 * pxtest_y1
py0_x = prior0 * pxtest_y0# 输出结果
yhat = 1 * (py1_x > py0_x)
print("预测结果: ", yhat)
4. 使用Sklearn实现多项式朴素贝叶斯

        虽然我们已经从头实现了多项式朴素贝叶斯分类器,但在实际应用中,通常使用现有的库来提高开发效率。Scikit-Learn中的MultinomialNB类正是为此设计的。

from sklearn.naive_bayes import MultinomialNBmodel = MultinomialNB()
model.fit(X_train, train_target)
yhat = model.predict(X_test)
print("预测结果: ", yhat)
5. 结语

        朴素贝叶斯分类器由于其简洁和高效,通常作为基线模型使用。虽然其假设相对严格,但在许多实际应用中,尤其是文本分类任务中,表现依然非常出色。与高斯朴素贝叶斯不同,多项式朴素贝叶斯适用于离散特征数据(如词频矩阵),且在处理大规模文本数据时非常高效。

        下一篇文章中,我们将探讨另一种常见的分类算法——K-Nearest Neighbors。

如果你觉得这篇博文对你有帮助,请点赞、收藏、关注我,并且可以打赏支持我!

欢迎关注我的后续博文,我将分享更多关于人工智能、自然语言处理和计算机视觉的精彩内容。

谢谢大家的支持!

这篇关于基于Python的机器学习系列(10):朴素贝叶斯 - 多项式模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1099213

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]