基于Python的机器学习系列(10):朴素贝叶斯 - 多项式模型

2024-08-23 11:12

本文主要是介绍基于Python的机器学习系列(10):朴素贝叶斯 - 多项式模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        在之前的文章中,我们已经探讨了朴素贝叶斯分类器在不同情况下的应用。本文将继续深入探讨,重点介绍朴素贝叶斯分类器中的多项式模型。

1. 背景介绍

        朴素贝叶斯分类器是一种基于贝叶斯定理的简单却强大的分类算法。在之前的文章中,我们介绍了高斯朴素贝叶斯模型,它假设特征服从高斯分布。然而,对于一些特定类型的数据,例如词频或计数数据,高斯分布并不是最合适的选择。这时,我们可以使用多项式朴素贝叶斯模型,它假设特征值来自多项分布,特别适用于文本分类问题。

        多项式朴素贝叶斯模型通常用于处理与文档分类相关的问题,在这些问题中,特征值(例如单词计数或频率)以类别为条件生成。贝叶斯定理告诉我们如何将这些信息转化为对某一类别的概率估计,公式如下:

        其中,P(y|w)是后验概率,P(w|y)是给定类别下词频的条件概率,P(y)是先验概率,P(w)是证据。

2. 实现步骤
  1. 准备数据
    将数据集转换为适合多项式朴素贝叶斯模型的格式,通常是词频矩阵。

  2. 计算条件概率
    对于每一个单词,根据其在训练集中不同类别下的出现频率,计算其条件概率。这些条件概率用于评估新数据属于每一个类别的可能性。

  3. 拉普拉斯平滑
    为了防止零概率问题,我们对所有条件概率进行拉普拉斯平滑。

  4. 计算先验概率
    先验概率是训练集中每个类别的样本数量占总样本数量的比例。

  5. 预测新数据的类别
    使用测试数据中的词频矩阵计算每个类别的后验概率,并选择概率最大的类别作为预测结果。

3. 代码实现
import numpy as np
import matplotlib.pyplot as plt
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, average_precision_score# 模拟数据集
train = np.array(['Chinese Beijing Chinese','Chinese Chinese Shanghai','Chinese Macao','Tokyo Japan Chinese',
])
test = np.array(['Chinese Chinese Chinese Tokyo Japan'
])
train_target = np.array([1, 1, 1, 0])# 文本向量化
vectorizer = CountVectorizer()
X_train = vectorizer.fit_transform(train)
X_test = vectorizer.transform(test)# 条件概率计算
def likelihood(X_class, laplace=1):return ((X_class.sum(axis=0)) + laplace) / (np.sum(X_class.sum(axis=0) + laplace))X_train_class1 = X_train[train_target == 1]
X_train_class0 = X_train[train_target == 0]
likelihood1 = likelihood(X_train_class1)
likelihood0 = likelihood(X_train_class0)# 先验概率计算
prior1 = len(train_target[train_target==1])/len(train_target)
prior0 = len(train_target[train_target==0])/len(train_target)# 预测测试数据
pxtest_y1 = np.prod(np.power(likelihood1, X_test.toarray()))
pxtest_y0 = np.prod(np.power(likelihood0, X_test.toarray()))
py1_x = prior1 * pxtest_y1
py0_x = prior0 * pxtest_y0# 输出结果
yhat = 1 * (py1_x > py0_x)
print("预测结果: ", yhat)
4. 使用Sklearn实现多项式朴素贝叶斯

        虽然我们已经从头实现了多项式朴素贝叶斯分类器,但在实际应用中,通常使用现有的库来提高开发效率。Scikit-Learn中的MultinomialNB类正是为此设计的。

from sklearn.naive_bayes import MultinomialNBmodel = MultinomialNB()
model.fit(X_train, train_target)
yhat = model.predict(X_test)
print("预测结果: ", yhat)
5. 结语

        朴素贝叶斯分类器由于其简洁和高效,通常作为基线模型使用。虽然其假设相对严格,但在许多实际应用中,尤其是文本分类任务中,表现依然非常出色。与高斯朴素贝叶斯不同,多项式朴素贝叶斯适用于离散特征数据(如词频矩阵),且在处理大规模文本数据时非常高效。

        下一篇文章中,我们将探讨另一种常见的分类算法——K-Nearest Neighbors。

如果你觉得这篇博文对你有帮助,请点赞、收藏、关注我,并且可以打赏支持我!

欢迎关注我的后续博文,我将分享更多关于人工智能、自然语言处理和计算机视觉的精彩内容。

谢谢大家的支持!

这篇关于基于Python的机器学习系列(10):朴素贝叶斯 - 多项式模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1099213

相关文章

Python将博客内容html导出为Markdown格式

《Python将博客内容html导出为Markdown格式》Python将博客内容html导出为Markdown格式,通过博客url地址抓取文章,分析并提取出文章标题和内容,将内容构建成html,再转... 目录一、为什么要搞?二、准备如何搞?三、说搞咱就搞!抓取文章提取内容构建html转存markdown

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专