in-memory形式的牧户K-Means聚类

2024-08-23 08:48

本文主要是介绍in-memory形式的牧户K-Means聚类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

<strong><span style="font-size:18px;">/**** @author YangXin* @info 以in-memory形式的模糊k-means聚类示例*/
package unitNine;import java.util.ArrayList;
import java.util.List;import org.apache.mahout.clustering.fuzzykmeans.FuzzyKMeansClusterer;
import org.apache.mahout.clustering.fuzzykmeans.SoftCluster;
import org.apache.mahout.common.distance.EuclideanDistanceMeasure;
import org.apache.mahout.math.Vector;public class FuzzyKMeansExample {public static void main(){List<Vector> sampleData = new ArrayList<Vector>();RandomPointsUtil.generateSamples(sampleData, 400, 1, 1, 3);RandomPointsUtil.generateSamples(sampleData, 300, 1, 0, 0.5);RandomPointsUtil.generateSamples(sampleData, 300, 0, 2, 0.1);int k = 3;List<Vector> randomPoints = RandomPointsUtil.chooseRandomPoints(sampleData, k);List<SoftCluster> clusters = new ArrayList<SoftCluster>();int clusterId &#

这篇关于in-memory形式的牧户K-Means聚类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1098914

相关文章

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

Spark MLlib模型训练—聚类算法 PIC(Power Iteration Clustering)

Spark MLlib模型训练—聚类算法 PIC(Power Iteration Clustering) Power Iteration Clustering (PIC) 是一种基于图的聚类算法,用于在大规模数据集上进行高效的社区检测。PIC 算法的核心思想是通过迭代图的幂运算来发现数据中的潜在簇。该算法适用于处理大规模图数据,特别是在社交网络分析、推荐系统和生物信息学等领域具有广泛应用。Spa

用Pytho解决分类问题_DBSCAN聚类算法模板

一:DBSCAN聚类算法的介绍 DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类算法,DBSCAN算法的核心思想是将具有足够高密度的区域划分为簇,并能够在具有噪声的空间数据库中发现任意形状的簇。 DBSCAN算法的主要特点包括: 1. 基于密度的聚类:DBSCAN算法通过识别被低密

Spark2.x 入门: KMeans 聚类算法

一 KMeans简介 KMeans 是一个迭代求解的聚类算法,其属于 划分(Partitioning) 型的聚类方法,即首先创建K个划分,然后迭代地将样本从一个划分转移到另一个划分来改善最终聚类的质量。 ML包下的KMeans方法位于org.apache.spark.ml.clustering包下,其过程大致如下: 1.根据给定的k值,选取k个样本点作为初始划分中心;2.计算所有样本点到每

通过Ajax请求后台数据,返回JSONArray(JsonObject),页面(Jquery)以table的形式展示

点击“会商人员情况表”,弹出层,显示一个表格,如下图: 利用Ajax和Jquery和JSONArray和JsonObject来实现: 代码如下: 在hspersons.html中: <!DOCTYPE html><html><head><meta charset="UTF-8"><title>会商人员情况表</title><script type="text/javasc

软文发稿相比其他广告形式有哪些持续性优势?

软文发稿在品牌宣发中具有显著的持续性优势,特别是在与其他广告形式的比较中更能体现这些特点。凭借其潜移默化的影响力、增强品牌权威性和公信力、持续性的曝光优势、精准触达目标受众的能力、强互动性与引导性,以及较高的性价比,已经成为品牌推广不可或缺的手段 一 长期存在与持续曝光 长时间的内容可见性     软文发表后,通常会长时间存在于各种平台上,无论是官网、博客、行业网站还是社交媒体帖子。读

【python 爬虫】python如何以request payload形式发送post请求

普通的http的post请求的请求content-type类型是:Content-Type:application/x-www-form-urlencoded, 而另外一种形式request payload,其Content-Type为application/json import jsonurl = 'https://api.github.com/some/endpoint'payload

【ML--13】聚类--层次聚类

一、基本概念 层次聚类不需要指定聚类的数目,首先它是将数据中的每个实例看作一个类,然后将最相似的两个类合并,该过程迭代计算只到剩下一个类为止,类由两个子类构成,每个子类又由更小的两个子类构成。 层次聚类方法对给定的数据集进行层次的分解,直到某种条件满足或者达到最大迭代次数。具体又可分为: 凝聚的层次聚类(AGNES算法):一种自底向上的策略,首先将每个对象作为一个簇,然后合并这些原子簇为越来

第L8周:机器学习|K-means聚类算法

本文为🔗365天深度学习训练营中的学习记录博客 🍖 原作者:K同学啊 | 接辅导、项目定制 🚀 文章来源:K同学的学习圈子深度学习 聚类算法的定义: 聚类就是将一个庞杂数据集中具有相似特征的数据自动归类到一起,称为一个簇,簇内的对象越相似,聚类的效果越好。“相似”这一概念,是利用距离标准来衡量的,我们通过计算对象与对象之间的距离远近来判断它们是否属于同一类别,即是否是同一个簇。 聚类是

Delphi 中三种回调函数形式解析

Delphi 支持三种形式的回调函数: 全局函数这种方式几乎是所有的语言都支持的,类的静态函数也可以归为此类,它保存的只是一个函数的代码起始地址指针( Pointer )。在 Delphi 中声明一般为: 1 TXXX = procedure / function (参数列表 ) ; 类的成员函数类的成员函数作为回调函数,与全局函数相比,需要关联具体的类的实例,所以它