OpenCV图像滤波(Image Filtering)常用函数及其用法详解

2024-08-23 05:44

本文主要是介绍OpenCV图像滤波(Image Filtering)常用函数及其用法详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        在设计信号调理电路时通常得设计滤波电路,滤波电路的作用一般时过滤掉噪声或者不需要的信号。在做图像处理时,也会遇到图像噪声问题,如椒盐噪声。有时需要将图像噪声处理掉,这就是所说的图像滤波。OpenCV有多个图像滤波函数,常用的有:boxFilter,filter2D,blur,bilateralFilter,GaussianBlur,medianBlur。图像滤波的实质是通过卷积运算使得图像平滑(Smooth),同时也会使图像变得更模糊(blur),有时图像滤波又被叫做图像模糊.下面逐一介绍这几个函数及其用法。

        boxFilter函数

        boxfilter函数的原型如下:

 这个函数使图像平滑(Smooth)使用这样的核:

这里

boxfilter函数参数:

        src 输入图像

        dst 输出图像(与输入图像同样类型,同样大小)

        ddepth 输出图像深度(-1表示与输入图像相同的图像深度)

        ksize  模糊处理所用核的大小

        anchor 锚点((-1,-1)代表锚点为核的中心)

        normalize  指定内核是否按其区域归一化的标志。

        borderType  用于推断图像外部的像素的边框模式.有一下几种,红框中的模式不支持.

boxfilter 应用场景

  • 图像平滑boxFilter可以用于平滑图像,减少图像中的噪声和细节,使得图像看起来更加柔和。这在一些需要降低图像复杂度的应用中非常有用,如图像预处理、特征提取等。

  • 图像去噪:通过平滑处理,boxFilter可以有效地去除图像中的随机噪声,尤其是那些分布在图像各个区域的均匀噪声。然而,左对齐对于椒盐噪声等非均匀分布的噪声,可能需要采用其他去噪方法。

  • 图像预处理:在进行图像分割、边缘检测等高级图像处理任务之前,通常需要对图像进行预处理,以减少噪声和细节对处理结果的影响。boxFilter可以作为这种预处理步骤之一。

  • 特征提取:在一些特征提取算法中,如Haar特征提取,boxFilter可以用于计算图像区域的积分特性,进而提取出有用的特征信息。

  • 计算图像的其他统计特性:通过调整normalize参数和边界处理方式,boxFilter还可以用于计算图像的其他统计特性,如方差、协方差等,为后续的图像处理和分析提供有用的信息。

用法示例     

         下面以一个实例来演示其用法,新建一个控制台程序,其代码如下:

#include <iostream>
#include <opencv2/opencv.hpp>using namespace std;
using namespace cv;int main()
{//std::cout << "Hello World!\n";Mat src = imread("1.webp");if (src.empty()){cout << "Cann't open image!" << endl;return -1;}imshow("Src", src);Mat dst;boxFilter(src, dst, -1, Size(3, 3), Point(-1, 1), true, BORDER_DEFAULT);imshow("Dst", dst);waitKey(0);return 0;
}

看下试运行效果。试运行,结果如下:

可以看出,平滑程度略有改善,结果并不明显。 

如果将mormolize选项设为false,结果又会如何?修改代码如下:

#include <iostream>
#include <opencv2/opencv.hpp>using namespace std;
using namespace cv;int main()
{//std::cout << "Hello World!\n";Mat src = imread("1.webp");if (src.empty()){cout << "Cann't open image!" << endl;return -1;}imshow("Src", src);Mat dst;//boxFilter(src, dst, -1, Size(3, 3), Point(-1, 1), true, BORDER_DEFAULT);boxFilter(src, dst, -1, Size(3, 3), Point(-1, 1), false, BORDER_DEFAULT);imshow("Dst", dst);waitKey(0);return 0;
}

   试运行,结果如下:

           说明将mormolize选项设为false,将会导致运算溢出。

如果不改变核的大小,改变boxfilter的次数结果会如何?修改代码如下:

#include <iostream>
#include <opencv2/opencv.hpp>using namespace std;
using namespace cv;int main()
{//std::cout << "Hello World!\n";Mat src = imread("1.webp");if (src.empty()){cout << "Cann't open image!" << endl;return -1;}imshow("Src", src);Mat dst;//boxFilter(src, dst, -1, Size(3, 3), Point(-1, 1), true, BORDER_DEFAULT);//boxFilter(src, dst, -1, Size(3, 3), Point(-1, 1), false, BORDER_DEFAULT);for (int i = 0; i < 100; i++){boxFilter(src, dst, -1, Size(3, 3), Point(-1, 1), true, BORDER_DEFAULT);}imshow("Dst", dst);waitKey(0);return 0;
}

试运行,结果如下:

 可以看出,如果不改变核的大小,增加boxFilter的次数,不会明显改变图像的平滑效果。

下面改变核的大小,修改代码如下:

#include <iostream>
#include <opencv2/opencv.hpp>using namespace std;
using namespace cv;int main()
{//std::cout << "Hello World!\n";Mat src = imread("1.webp");if (src.empty()){cout << "Cann't open image!" << endl;return -1;}imshow("Src", src);Mat dst;//boxFilter(src, dst, -1, Size(3, 3), Point(-1, 1), true, BORDER_DEFAULT);//boxFilter(src, dst, -1, Size(3, 3), Point(-1, 1), false, BORDER_DEFAULT);/*for (int i = 0; i < 100; i++){boxFilter(src, dst, -1, Size(3, 3), Point(-1, 1), true, BORDER_DEFAULT);}*/boxFilter(src, dst, -1, Size(11, 11), Point(-1, 1), true, BORDER_DEFAULT);imshow("Dst", dst);waitKey(0);return 0;
}

试运行,结果如下:

可以看出,增大核的size可明显改善平滑效果。

        filter2D函数

        filter2D函数的原型如下:

该函数用卷积核对图像进行卷积运算。将任意线性滤波器应用于图像。支持就地操作。当孔径部分位于图像之外时,该函数根据指定的边界模式插值异常像素值。该函数实际上计算相关性,而不是卷积:

ilter2D函数的参数:

        src 输入图像

        dst输出图像

        kernel 用以运算的核

        anchor 卷积核的锚点,缺省值是Point(-1,1),卷积核的中心。

        delta  在将过滤像素存储到 dst 之前添加到过滤像素的可选值

        borderType 像素外推法。与boxfilter的一致。

OpenCV的filter2D函数是一个非常强大的工具,它允许你对图像应用自定义的卷积核(kernel)。这个函数在图像处理中非常有用,因为它可以实现多种效果,比如模糊、锐化、边缘检测等。

        用法示例

        图像平滑 实现均值模糊修改上面的代码如下:

#include <iostream>
#include <opencv2/opencv.hpp>using namespace std;
using namespace cv;int main()
{//std::cout << "Hello World!\n";Mat src = imread("1.webp");if (src.empty()){cout << "Cann't open image!" << endl;return -1;}imshow("Src", src);Mat dst;/**************boxFilter//boxFilter(src, dst, -1, Size(3, 3), Point(-1, 1), true, BORDER_DEFAULT);//boxFilter(src, dst, -1, Size(3, 3), Point(-1, 1), false, BORDER_DEFAULT);for (int i = 0; i < 100; i++){boxFilter(src, dst, -1, Size(3, 3), Point(-1, 1), true, BORDER_DEFAULT);}boxFilter(src, dst, -1, Size(11, 11), Point(-1, 1), true, BORDER_DEFAULT);*///filter2D//blurfloat ftem = 0.021;Mat kernel = (Mat_<float>(7, 7) << ftem, ftem, ftem, ftem, ftem, ftem, ftem,ftem, ftem, ftem, ftem, ftem, ftem, ftem,ftem, ftem, ftem, ftem, ftem, ftem, ftem,ftem, ftem, ftem, ftem, ftem, ftem, ftem,ftem, ftem, ftem, ftem, ftem, ftem, ftem,ftem, ftem, ftem, ftem, ftem, ftem, ftem,ftem, ftem, ftem, ftem, ftem, ftem, ftem);filter2D(src, dst, -1, kernel);imshow("Dst", dst);waitKey(0);return 0;
}

试运行,结果如下:

可以看到有平滑效果。

        图像锐化(Sharpening)修改代码如下:

#include <iostream>
#include <opencv2/opencv.hpp>using namespace std;
using namespace cv;int main()
{//std::cout << "Hello World!\n";Mat src = imread("1.webp");if (src.empty()){cout << "Cann't open image!" << endl;return -1;}imshow("Src", src);Mat dst;/**************boxFilter//boxFilter(src, dst, -1, Size(3, 3), Point(-1, 1), true, BORDER_DEFAULT);//boxFilter(src, dst, -1, Size(3, 3), Point(-1, 1), false, BORDER_DEFAULT);for (int i = 0; i < 100; i++){boxFilter(src, dst, -1, Size(3, 3), Point(-1, 1), true, BORDER_DEFAULT);}boxFilter(src, dst, -1, Size(11, 11), Point(-1, 1), true, BORDER_DEFAULT);*///filter2D//Averaging Blur/*float ftem = 0.05;Mat kernel = (Mat_<float>(7, 7) << ftem, -ftem, ftem, ftem, ftem, -ftem, ftem,-ftem, ftem, ftem, ftem, ftem, ftem, -ftem,ftem, -ftem, ftem, ftem, ftem, -ftem, ftem,-ftem, ftem, ftem, ftem, ftem, ftem, -ftem,ftem, -ftem, ftem, ftem, ftem, -ftem, ftem,-ftem, ftem, ftem, ftem, ftem, ftem, -ftem,ftem, -ftem, ftem, ftem, ftem, -ftem, ftem);filter2D(src, dst, -1, kernel);imshow("Dst", dst);*///sharpingMat kernel = (Mat_<float>(3, 3) <<-1, -1, -1,-1, 9, -1,-1, -1, -1);filter2D(src, dst, -1, kernel);imshow("Dst", dst);waitKey(0);return 0;
}

试运行,结果如下:

Sobel边缘检测

修改上面的店面如下:

#include <iostream>
#include <opencv2/opencv.hpp>using namespace std;
using namespace cv;int main()
{//std::cout << "Hello World!\n";Mat src = imread("1.webp");if (src.empty()){cout << "Cann't open image!" << endl;return -1;}imshow("Src", src);Mat dst;/**************boxFilter//boxFilter(src, dst, -1, Size(3, 3), Point(-1, 1), true, BORDER_DEFAULT);//boxFilter(src, dst, -1, Size(3, 3), Point(-1, 1), false, BORDER_DEFAULT);for (int i = 0; i < 100; i++){boxFilter(src, dst, -1, Size(3, 3), Point(-1, 1), true, BORDER_DEFAULT);}boxFilter(src, dst, -1, Size(11, 11), Point(-1, 1), true, BORDER_DEFAULT);*///filter2D//Averaging Blur/*float ftem = 0.05;Mat kernel = (Mat_<float>(7, 7) << ftem, -ftem, ftem, ftem, ftem, -ftem, ftem,-ftem, ftem, ftem, ftem, ftem, ftem, -ftem,ftem, -ftem, ftem, ftem, ftem, -ftem, ftem,-ftem, ftem, ftem, ftem, ftem, ftem, -ftem,ftem, -ftem, ftem, ftem, ftem, -ftem, ftem,-ftem, ftem, ftem, ftem, ftem, ftem, -ftem,ftem, -ftem, ftem, ftem, ftem, -ftem, ftem);filter2D(src, dst, -1, kernel);imshow("Dst", dst);*//*//sharpingMat kernel = (Mat_<float>(3, 3) <<-1, -1, -1,-1, 9, -1,-1, -1, -1);filter2D(src, dst, -1, kernel);imshow("Dst", dst);*///Sobel边缘检测Mat sobelX = (Mat_<float>(3, 3) <<-1, 0, 1,-2, 0, 2,-1, 0, 1);Mat sobelY = (Mat_<float>(3, 3) <<-1, -2, -1,0, 0, 0,1, 2, 1);Mat dstx, dsty;filter2D(src, dstx, -1, sobelX);filter2D(src, dsty, -1, sobelY);addWeighted(dstx, 0.5, dsty, 0.5, 0, dst);imshow("Dst", dst);waitKey(0);return 0;
}

试运行,结果如下:

Laplacian边缘检测

修改上面代码如下:

#include <iostream>
#include <opencv2/opencv.hpp>using namespace std;
using namespace cv;int main()
{//std::cout << "Hello World!\n";Mat src = imread("1.webp");if (src.empty()){cout << "Cann't open image!" << endl;return -1;}imshow("Src", src);Mat dst;/**************boxFilter//boxFilter(src, dst, -1, Size(3, 3), Point(-1, 1), true, BORDER_DEFAULT);//boxFilter(src, dst, -1, Size(3, 3), Point(-1, 1), false, BORDER_DEFAULT);for (int i = 0; i < 100; i++){boxFilter(src, dst, -1, Size(3, 3), Point(-1, 1), true, BORDER_DEFAULT);}boxFilter(src, dst, -1, Size(11, 11), Point(-1, 1), true, BORDER_DEFAULT);*///filter2D//Averaging Blur/*float ftem = 0.05;Mat kernel = (Mat_<float>(7, 7) << ftem, -ftem, ftem, ftem, ftem, -ftem, ftem,-ftem, ftem, ftem, ftem, ftem, ftem, -ftem,ftem, -ftem, ftem, ftem, ftem, -ftem, ftem,-ftem, ftem, ftem, ftem, ftem, ftem, -ftem,ftem, -ftem, ftem, ftem, ftem, -ftem, ftem,-ftem, ftem, ftem, ftem, ftem, ftem, -ftem,ftem, -ftem, ftem, ftem, ftem, -ftem, ftem);filter2D(src, dst, -1, kernel);imshow("Dst", dst);*///sharping/*Mat kernel = (Mat_<float>(3, 3) <<-1, -1, -1,-1, 9, -1,-1, -1, -1);filter2D(src, dst, -1, kernel);imshow("Dst", dst);*///Sobel边缘检测/*Mat sobelX = (Mat_<float>(3, 3) <<-1, 0, 1,-2, 0, 2,-1, 0, 1);Mat sobelY = (Mat_<float>(3, 3) <<-1, -2, -1,0, 0, 0,1, 2, 1);Mat dstx, dsty;filter2D(src, dstx, -1, sobelX);filter2D(src, dsty, -1, sobelY);addWeighted(dstx, 0.5, dsty, 0.5, 0, dst);imshow("Dst", dst);*///Laplacian边缘检测Mat laplacian = (cv::Mat_<float>(3, 3) <<0, -1, 0,-1, 4, -1,0, -1, 0);filter2D(src, dst, -1, laplacian);imshow("Dst", dst);waitKey(0);return 0;
}

试运行,结果如下:

        浮雕(Embossing)效果

        修改上面代码如下:

#include <iostream>
#include <opencv2/opencv.hpp>using namespace std;
using namespace cv;int main()
{//std::cout << "Hello World!\n";Mat src = imread("1.webp");if (src.empty()){cout << "Cann't open image!" << endl;return -1;}imshow("Src", src);Mat dst;/**************boxFilter//boxFilter(src, dst, -1, Size(3, 3), Point(-1, 1), true, BORDER_DEFAULT);//boxFilter(src, dst, -1, Size(3, 3), Point(-1, 1), false, BORDER_DEFAULT);for (int i = 0; i < 100; i++){boxFilter(src, dst, -1, Size(3, 3), Point(-1, 1), true, BORDER_DEFAULT);}boxFilter(src, dst, -1, Size(11, 11), Point(-1, 1), true, BORDER_DEFAULT);*///filter2D//Averaging Blur/*float ftem = 0.05;Mat kernel = (Mat_<float>(7, 7) << ftem, -ftem, ftem, ftem, ftem, -ftem, ftem,-ftem, ftem, ftem, ftem, ftem, ftem, -ftem,ftem, -ftem, ftem, ftem, ftem, -ftem, ftem,-ftem, ftem, ftem, ftem, ftem, ftem, -ftem,ftem, -ftem, ftem, ftem, ftem, -ftem, ftem,-ftem, ftem, ftem, ftem, ftem, ftem, -ftem,ftem, -ftem, ftem, ftem, ftem, -ftem, ftem);filter2D(src, dst, -1, kernel);imshow("Dst", dst);*///sharping/*Mat kernel = (Mat_<float>(3, 3) <<-1, -1, -1,-1, 9, -1,-1, -1, -1);filter2D(src, dst, -1, kernel);imshow("Dst", dst);*///Sobel边缘检测/*Mat sobelX = (Mat_<float>(3, 3) <<-1, 0, 1,-2, 0, 2,-1, 0, 1);Mat sobelY = (Mat_<float>(3, 3) <<-1, -2, -1,0, 0, 0,1, 2, 1);Mat dstx, dsty;filter2D(src, dstx, -1, sobelX);filter2D(src, dsty, -1, sobelY);addWeighted(dstx, 0.5, dsty, 0.5, 0, dst);imshow("Dst", dst);*///Laplacian边缘检测/*Mat laplacian = (cv::Mat_<float>(3, 3) <<0, -1, 0,-1, 4, -1,0, -1, 0);filter2D(src, dst, -1, laplacian);imshow("Dst", dst);*///Mat emboss = (cv::Mat_<float>(3, 3) <<-2, -1, 0,-1, 1, 1,0, 1, 2);filter2D(src, dst, -1, emboss);imshow("Dst", dst);waitKey(0);return 0;
}

试运行,结果如下:

blur函数

        blur函数原型如下:

blur函数实际上是将normalize变量设为true的boxFilter,这里就不再做介绍了。

        用法示例

        修改上面的代码如下(以后只列出修改部分,相同部分不再列出):

//blur函数blur(src, dst, Size(9,9));imshow("Dst", dst);waitKey(0);return 0;
}

试运行,结果如下:

 

bilateralFilter 函数

        bilateralFilter 函数的原型如下:

        双边滤波器可以很好地减少不需要的噪声,同时保持边缘相当清晰。然而,与大多数过滤器相比,它的速度非常慢。

        西格玛值:为简单起见,您可以将 2 个西格玛值设置为相同。如果它们很小(< 10),过滤器不会有太大的效果,而如果它们很大(> 150),它们将产生非常强的效果,使图像看起来“卡通”​​。

        滤波器大小:大型滤波器(d > 5)非常慢,因此建议对于实时应用程序使用 d=5,对于需要重度噪声过滤的离线应用程序可能使用 d=9。

        bilateralFilter 函数参数:

                src 源图像, 8 位或浮点、1 通道或 3 通道图像。

                dst 与 src 具有相同大小和类型的目标图像。

                d   过滤期间使用的每个像素邻域的直径。如果它是非正数,则根据 sigmaSpace 计算。

                sigmaColor 过滤颜色空间中的西格玛。参数值越大,意味着像素邻域内越远的颜色(参                                     见 sigmaSpace)将混合在一起,从而产生更大的半相等颜色区域。

                sigmaSpace 在坐标空间中过滤 sigma。参数值越大,意味着越远的像素只要颜色足够                                          接近,就会相互影响(参见 sigmaColor )。当 d>0 时,它指定邻域大                                            小,而与 sigmaSpace 无关。否则,d 与 sigmaSpace 成正比。

                borderType 边框模式用于推断图像外部的像素。

        用法示例

        修改上面代码如下:

	// bilateralFilterbilateralFilter(src, dst, 7, 75, 75);imshow("Dst", dst);waitKey(0);return 0;
}

试运行,结果如下:

GaussianBlur函数

        GaussianBlur函数的原型如下:

该函数将源图像与指定的高斯核进行卷积。支持就地过滤。

GaussianBlur函数参数:

        src 输入图像;图像可以有任意数量的通道,这些通道是独立处理的,但深度应该是                 CV_8U、CV_16U、CV_16S、CV_32F 或 CV_64F。

        dst 与 src 具有相同大小和类型的输出图像

        ksize 高斯核大小。 ksize.width 和 ksize.height 可以不同,但​​它们都必须为正数且为奇数或                     者,它们可以为零,然后根据西格玛计算它们。

        sigmaX X方向高斯核标准偏差

        sigmaY Y方向高斯核标准偏差;如果sigmaY为零,则将其设置为等于sigmaX,如果两个                             sigma都为零,它们分别根据ksize.width和ksize.height计算(详见                                                   getGaussianKernel);为了完全控制结果,而不管未来可能对所有这些语义进行的                       修改,建议指定所有ksize、sigmaX和sigmaY。

        borderType 边框模式用于推断图像外部的像素。

  GaussianBlur函数通过高斯滤波器对图像进行模糊处理。高斯滤波器是一种线性平滑滤波器,其对于图像中的每一个像素点,都将其周围的像素值按照高斯分布进行加权平均,从而达到模糊图像的效果。这种方法在图像处理中非常有效,特别是在去除图像噪声和细节方面。

        用法示例

        修改上面的程序代码如下:

	//GaussianBlurGaussianBlur(src, dst, Size(9, 9),10,10);imshow("Dst", dst);waitKey(0);return 0;
}

        试运行,结果如下:

增大核或者增大sigmaX,sigmaY,都可增强模糊效果。

medianBlur函数

        medianBlur函数的原型如下:

        该函数使用ksize×ksize光圈的中值滤波器平滑图像。多通道图像的每个通道都是独立处理的。支持就地操作。

        medianBlur函数参数:

               src: 输入图像,可以是单通道或三通道的8位或浮点图像。然而,对于 medianBlur 来                            说,它主要被用于8位(CV_8U)的单通道或三通道图像。

               dst: 输出图像,与输入图像具有相同的类型和大小。

                ksize: 滤波器的大小,必须是正奇数。

        虽然 medianBlur 对于去除椒盐噪声非常有效,但它也可能导致图像细节的模糊,特别是当 ksize 值较大时。因此,在选择 ksize 时需要权衡去噪效果和图像细节保留之间的平衡。

      用法示例

     修改上面程序代码如下:

	//GaussianBlur/*GaussianBlur(src, dst, Size(9, 9),10,10);imshow("Dst", dst);*///medianBlurmedianBlur(src, dst, 5);imshow("Dst", dst);waitKey(0);return 0;
}

试运行,结果如下:

OpenCV 图像了滤波常用函数已经,介绍完毕。示例源代码已经上传到CSDN,如果需要可以去下载。链接为:https://download.csdn.net/download/billliu66/89649489

这篇关于OpenCV图像滤波(Image Filtering)常用函数及其用法详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1098510

相关文章

Java Predicate接口定义详解

《JavaPredicate接口定义详解》Predicate是Java中的一个函数式接口,它代表一个判断逻辑,接收一个输入参数,返回一个布尔值,:本文主要介绍JavaPredicate接口的定义... 目录Java Predicate接口Java lamda表达式 Predicate<T>、BiFuncti

详解如何通过Python批量转换图片为PDF

《详解如何通过Python批量转换图片为PDF》:本文主要介绍如何基于Python+Tkinter开发的图片批量转PDF工具,可以支持批量添加图片,拖拽等操作,感兴趣的小伙伴可以参考一下... 目录1. 概述2. 功能亮点2.1 主要功能2.2 界面设计3. 使用指南3.1 运行环境3.2 使用步骤4. 核

一文详解JavaScript中的fetch方法

《一文详解JavaScript中的fetch方法》fetch函数是一个用于在JavaScript中执行HTTP请求的现代API,它提供了一种更简洁、更强大的方式来处理网络请求,:本文主要介绍Jav... 目录前言什么是 fetch 方法基本语法简单的 GET 请求示例代码解释发送 POST 请求示例代码解释

详解nginx 中location和 proxy_pass的匹配规则

《详解nginx中location和proxy_pass的匹配规则》location是Nginx中用来匹配客户端请求URI的指令,决定如何处理特定路径的请求,它定义了请求的路由规则,后续的配置(如... 目录location 的作用语法示例:location /www.chinasem.cntestproxy

C/C++错误信息处理的常见方法及函数

《C/C++错误信息处理的常见方法及函数》C/C++是两种广泛使用的编程语言,特别是在系统编程、嵌入式开发以及高性能计算领域,:本文主要介绍C/C++错误信息处理的常见方法及函数,文中通过代码介绍... 目录前言1. errno 和 perror()示例:2. strerror()示例:3. perror(

CSS will-change 属性示例详解

《CSSwill-change属性示例详解》will-change是一个CSS属性,用于告诉浏览器某个元素在未来可能会发生哪些变化,本文给大家介绍CSSwill-change属性详解,感... will-change 是一个 css 属性,用于告诉浏览器某个元素在未来可能会发生哪些变化。这可以帮助浏览器优化

Python基础文件操作方法超详细讲解(详解版)

《Python基础文件操作方法超详细讲解(详解版)》文件就是操作系统为用户或应用程序提供的一个读写硬盘的虚拟单位,文件的核心操作就是读和写,:本文主要介绍Python基础文件操作方法超详细讲解的相... 目录一、文件操作1. 文件打开与关闭1.1 打开文件1.2 关闭文件2. 访问模式及说明二、文件读写1.

详解C++中类的大小决定因数

《详解C++中类的大小决定因数》类的大小受多个因素影响,主要包括成员变量、对齐方式、继承关系、虚函数表等,下面就来介绍一下,具有一定的参考价值,感兴趣的可以了解一下... 目录1. 非静态数据成员示例:2. 数据对齐(Padding)示例:3. 虚函数(vtable 指针)示例:4. 继承普通继承虚继承5.

前端高级CSS用法示例详解

《前端高级CSS用法示例详解》在前端开发中,CSS(层叠样式表)不仅是用来控制网页的外观和布局,更是实现复杂交互和动态效果的关键技术之一,随着前端技术的不断发展,CSS的用法也日益丰富和高级,本文将深... 前端高级css用法在前端开发中,CSS(层叠样式表)不仅是用来控制网页的外观和布局,更是实现复杂交

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将