概率统计Python计算:离散型自定义分布数学期望的计算(一)

2024-08-22 22:48

本文主要是介绍概率统计Python计算:离散型自定义分布数学期望的计算(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
对非经典分布的随机变量,当然可以按博文《自定义离散型分布》中介绍的方法,自定义rv_discrete(离散型)或rv_continuos(连续型)的子类(详见博文《自定义连续型分布》),然后调用其expect函数计算数学期望。
例1 有3只球,4个盒子,盒子的编号为1、2、3。将球逐个独立地,随机地放入4个盒子中去。以 X X X表示其中至少有一只球的盒子的最小号码(例如 X = 3 X=3 X=3表示第1号,第2号盒子是空的,第3号盒子至少有一只球),计算 E ( X ) E(X) E(X)
解: 显然, X X X的取值为 { 1 , 2 , 3 , 4 } \{1, 2, 3, 4\} {1,2,3,4}。设 A i A_i Ai表示 i i i号盒是空的( i = 1 , 2 , 3 , 4 i=1, 2, 3, 4 i=1,2,3,4)。每个球放入1号盒的概率为 1 / 4 1/4 1/4,没有放入1号盒的概率为 3 / 4 3/4 3/4
P ( X = 1 ) = P ( A ‾ 1 ) = 1 − P ( A 1 ) = 1 − ( 3 4 ) 3 = 37 64 P(X=1)=P(\overline{A}_1)=1-P(A_1)=1-\left(\frac{3}{4}\right)^3=\frac{37}{64} P(X=1)=P(A1)=1P(A1)=1(43)3=6437
P ( X = 2 ) = P ( A 1 A ‾ 2 ) = P ( A 1 ) P ( A ‾ 2 ∣ A 1 ) = P ( A 1 ) ( 1 − P ( A 2 ∣ A 1 ) ) = ( 3 4 ) 3 [ 1 − ( 2 3 ) 3 ] = 27 64 ⋅ 19 27 = 19 64 P(X=2)=P(A_1\overline{A}_2)=P(A_1)P(\overline{A}_2|A_1)\\ =P(A_1)(1-P(A_2|A_1))=\left(\frac{3}{4}\right)^3\left[1-\left(\frac{2}{3}\right)^3\right]\\ =\frac{27}{64}\cdot\frac{19}{27}=\frac{19}{64} P(X=2)=P(A1A2)=P(A1)P(A2A1)=P(A1)(1P(A2A1))=(43)3[1(32)3]=64272719=6419
P ( X = 3 ) = P ( A 1 A 2 A ‾ 3 ) = P ( A 1 ) P ( A 2 ∣ A 1 ) P ( A ‾ 3 ∣ A 1 A 2 ) = ( 3 4 ) 3 ( 2 3 ) 3 [ 1 − ( 1 2 ) 3 ] = 7 64 P(X=3)=P(A_1A_2\overline{A}_3)=P(A_1)P(A_2|A_1)P(\overline{A}_3|A_1A_2)\\ =\left(\frac{3}{4}\right)^3\left(\frac{2}{3}\right)^3\left[1-\left(\frac{1}{2}\right)^3\right]=\frac{7}{64} P(X=3)=P(A1A2A3)=P(A1)P(A2A1)P(A3A1A2)=(43)3(32)3[1(21)3]=647
P ( X = 4 ) = P ( A 1 A 2 A 3 A ‾ 4 ) = P ( A 1 ) P ( A 2 ∣ A 1 ) P ( A 3 ∣ A 1 A 2 ) P ( A ‾ 4 ∣ A 1 A 2 A 3 ) = ( 3 4 ) 3 ( 2 3 ) 3 ( 1 2 ) 3 = 1 64 P(X=4)=P(A_1A_2A_3\overline{A}_4)=P(A_1)P(A_2|A_1)P(A_3|A_1A_2)P(\overline{A}_4|A_1A_2A_3)\\ =\left(\frac{3}{4}\right)^3\left(\frac{2}{3}\right)^3\left(\frac{1}{2}\right)^3=\frac{1}{64} P(X=4)=P(A1A2A3A4)=P(A1)P(A2A1)P(A3A1A2)P(A4A1A2A3)=(43)3(32)3(21)3=641
X X X~ ( 1 2 3 4 37 64 19 64 7 64 1 64 ) \begin{pmatrix}1&2&3&4\\\frac{37}{64}&\frac{19}{64}&\frac{7}{64}&\frac{1}{64}\end{pmatrix} (164372641936474641) E ( X ) = 1 ⋅ 37 64 + 2 ⋅ 19 64 + 3 ⋅ 7 64 + 4 ⋅ 1 64 = 25 16 E(X)=1\cdot\frac{37}{64}+2\cdot\frac{19}{64}+3\cdot\frac{7}{64}+4\cdot\frac{1}{64}=\frac{25}{16} E(X)=16437+26419+3647+4641=1625
下列代码定义分布律为 ( 1 2 3 4 37 64 19 64 7 64 1 64 ) \begin{pmatrix}1&2&3&4\\\frac{37}{64}&\frac{19}{64}&\frac{7}{64}&\frac{1}{64}\end{pmatrix} (164372641936474641)的离散型分布,调用其expect函数计算 E ( X ) E(X) E(X)

import numpy as np                      #导入numpy
from scipy.stats import rv_discrete     #导入rv_discrete
X=np.array([1,2,3,4])                   #随机变量
P=np.array([37/64, 19/64,7/64, 1/64])   #X的分布概率
mydist=rv_discrete(values=(X, P))       #自定义离散分布
Ex=mydist.expect()                      #计算数学期望
print('E(X)=%.4f'%Ex)

第3~4行设置分布律数据X和P。第5行用分布律数据X和P定义离散型分布mydist。第6行调用该分布的expect函数,计算随机变量 X X X的数学期望 E ( X ) E(X) E(X)。运行程序,输出

E(X)=1.5625

恰为 E ( X ) = 25 16 E(X)=\frac{25}{16} E(X)=1625精确到万分位的值。
写博不易,敬请支持:
如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!
代码诚可贵,原理价更高。若为AI学,读正版书好
返回《导引》

这篇关于概率统计Python计算:离散型自定义分布数学期望的计算(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1097622

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

hdu1496(用hash思想统计数目)

作为一个刚学hash的孩子,感觉这道题目很不错,灵活的运用的数组的下标。 解题步骤:如果用常规方法解,那么时间复杂度为O(n^4),肯定会超时,然后参考了网上的解题方法,将等式分成两个部分,a*x1^2+b*x2^2和c*x3^2+d*x4^2, 各自作为数组的下标,如果两部分相加为0,则满足等式; 代码如下: #include<iostream>#include<algorithm

hdu4865(概率DP)

题意:已知前一天和今天的天气概率,某天的天气概率和叶子的潮湿程度的概率,n天叶子的湿度,求n天最有可能的天气情况。 思路:概率DP,dp[i][j]表示第i天天气为j的概率,状态转移如下:dp[i][j] = max(dp[i][j, dp[i-1][k]*table2[k][j]*table1[j][col] )  代码如下: #include <stdio.h>#include

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

uva 10014 Simple calculations(数学推导)

直接按照题意来推导最后的结果就行了。 开始的时候只做到了第一个推导,第二次没有继续下去。 代码: #include<stdio.h>int main(){int T, n, i;double a, aa, sum, temp, ans;scanf("%d", &T);while(T--){scanf("%d", &n);scanf("%lf", &first);scanf

uva 10025 The ? 1 ? 2 ? ... ? n = k problem(数学)

题意是    ?  1  ?  2  ?  ...  ?  n = k 式子中给k,? 处可以填 + 也可以填 - ,问最小满足条件的n。 e.g k = 12  - 1 + 2 + 3 + 4 + 5 + 6 - 7 = 12 with n = 7。 先给证明,令 S(n) = 1 + 2 + 3 + 4 + 5 + .... + n 暴搜n,搜出当 S(n) >=

uva 11044 Searching for Nessy(小学数学)

题意是给出一个n*m的格子,求出里面有多少个不重合的九宫格。 (rows / 3) * (columns / 3) K.o 代码: #include <stdio.h>int main(){int ncase;scanf("%d", &ncase);while (ncase--){int rows, columns;scanf("%d%d", &rows, &col

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言