概率统计Python计算:双因素无重复试验方差分析

2024-08-22 22:48

本文主要是介绍概率统计Python计算:双因素无重复试验方差分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
双因素无重复试验方差分析的数据模型 X X X是一个 r × s r\times s r×s的矩阵, X i j X_{ij} Xij~ N ( μ i j , σ 2 ) N(\mu_{ij},\sigma^2) N(μij,σ2)。令 X ‾ = 1 r s ∑ i = 1 r ∑ j = 1 s X i j \overline{X}=\frac{1}{rs}\sum\limits_{i=1}^r\sum\limits_{j=1}^{s}X_{ij} X=rs1i=1rj=1sXij X ‾ i ⋅ = 1 r ∑ j = 1 s X i j \overline{X}_{i\cdot}=\frac{1}{r}\sum\limits_{j=1}^{s}X_{ij} Xi=r1j=1sXij X ‾ ⋅ j = 1 r ∑ i = 1 r X i j \overline{X}_{\cdot j}=\frac{1}{r}\sum\limits_{i=1}^{r}X_{ij} Xj=r1i=1rXij i = 1 , 2 , ⋅ , r , j = 1 , 2 , ⋯ , s i=1,2,\cdot,r,j=1,2,\cdots,s i=1,2,,r,j=1,2,,s。与双因素等重复试验方差分析相仿,样本数据总变差 S T = ∑ i = 1 r ∑ j = 1 s ( X i j − X ‾ ) 2 S_T=\sum\limits_{i=1}^{r}\sum\limits_{j=1}^{s}(X_{ij}-\overline{X})^2 ST=i=1rj=1s(XijX)2,可分解为因素 A A A的效应平方和 S A = s ∑ i = 1 r ( X ‾ i ⋅ − X ‾ ) 2 S_A=s\sum\limits_{i=1}^{r}(\overline{X}_{i\cdot}-\overline{X})^2 SA=si=1r(XiX)2,因素 B B B的效应平方和 S B = r ∑ j = 1 s ( X ‾ ⋅ j − X ‾ ) 2 S_B=r\sum\limits_{j=1}^{s}(\overline{X}_{\cdot j}-\overline{X})^2 SB=rj=1s(XjX)2,误差平方和 S E = ∑ i = 1 r ∑ j = 1 s ( X i j − X ‾ i ⋅ − X ‾ ⋅ j + X ‾ ) 2 S_E=\sum\limits_{i=1}^{r}\sum\limits_{j=1}^{s}(X_{ij}-\overline{X}_{i\cdot}-\overline{X}_{\cdot j}+\overline{X})^2 SE=i=1rj=1s(XijXiXj+X)2之和,即
S T = S A + S B + S E . S_T=S_A+S_B+S_E. ST=SA+SB+SE.
利用这些数据,希望在显著水平 α \alpha α下检验假设
H 01 : μ i ⋅ − μ = 0 , i = 1 , 2 , ⋯ , r , H 02 : μ ⋅ j − μ = 0 , j = 1 , 2 , ⋯ , s . H_{01}:\mu_{i\cdot}-\mu=0,i=1,2,\cdots,r,\\ H_{02}:\mu_{\cdot j}-\mu=0,j=1,2,\cdots,s. H01:μiμ=0,i=1,2,,r,H02:μjμ=0,j=1,2,,s.
其中, μ i ⋅ = 1 s ∑ j = 1 s μ i j , i = 1 , 2 , ⋯ , r \mu_{i\cdot}=\frac{1}{s}\sum\limits_{j=1}^s\mu_{ij}, i=1,2,\cdots,r μi=s1j=1sμij,i=1,2,,r μ ⋅ j = ∑ i = 1 r μ i j , j = 1 , 2 , ⋯ , s \mu_{\cdot j}=\sum\limits_{i=1}^r\mu_{ij},j=1,2,\cdots,s μj=i=1rμij,j=1,2,,s μ = 1 r s ∑ i = 1 r ∑ j = 1 s μ i j \mu=\frac{1}{rs}\sum\limits_{i=1}^{r}\sum\limits_{j=1}^{s}\mu_{ij} μ=rs1i=1rj=1sμij
下列代码定义计算双因素无重复试验方差分析的函数。

def dfeVarAnal1(X, alpha):r,s=X.shape									#模型数据结构Xi_bar=X.mean(axis=1).reshape(r, 1)			#A因素样本均值Xj_bar=X.mean(axis=0).reshape(1, s)			#B因素样本均值Xt_bar=X.mean()								#样本总均值ST=((X-Xt_bar)**2).sum()					#总变差SA=s*((Xi_bar-Xt_bar)**2).sum()				#A效应平方和SB=r*((Xj_bar-Xt_bar)**2).sum()				#B效应平方和SE=ST-SA-SB									#误差平方和F1=(s-1)*SA/SE								#H01检验统计量值accept1=ftestR(F1, r-1, (r-1)*(s-1), alpha)	#检验H01F2=(r-1)*SB/SE								#H02检验统计量值accept2=ftestR(F2, s-1, (r-1)*(s-1), alpha)	#检验H02return (accept1, accept2)

函数dfeVarAnal1的参数X表示双因素无重复试验方差分析的数据模型 X X X,alpha表示显著水平 α \alpha α。第2行计算数据模型的结构行数s,列数t。第3行计算因素A的各个水平对应的样本均值 ( X ‾ 1 ⋅ , X ‾ 2 ⋅ , ⋯ , X ‾ r ⋅ ) T (\overline{X}_{1\cdot},\overline{X}_{2\cdot},\cdots,\overline{X}_{r\cdot})^T (X1,X2,,Xr)T,第4行计算因素B各水平对应的样本均值 ( X ‾ ⋅ 1 , X ‾ ⋅ 2 , ⋯ , X ‾ ⋅ s ) (\overline{X}_{\cdot1},\overline{X}_{\cdot2},\cdots,\overline{X}_{\cdot s}) (X1,X2,,Xs),第5行计算样本总均值 X ‾ \overline{X} X,第6~9行分别计算 S T S_T ST S A S_A SA S B S_B SB S E S_E SE。第10行计算假设 H 01 H_{01} H01的检验统计量值 S A / ( r − 1 ) S E / ( r − 1 ) ( s − 1 ) \frac{S_A/(r-1)}{S_E/(r-1)(s-1)} SE/(r1)(s1)SA/(r1)~ F ( r − 1 , ( r − 1 ) ( s − 1 ) ) F(r-1,(r-1)(s-1)) F(r1,(r1)(s1)),第11行调用函数ftestR计算 H 01 H_{01} H01的右侧检验。第12行计算 H 02 H_{02} H02的检验统计量 S B / ( s − 1 ) S E / ( r − 1 ) ( s − 1 ) \frac{S_B/(s-1)}{S_E/(r-1)(s-1)} SE/(r1)(s1)SB/(s1)~ F ( s − 1 , ( r − 1 ) ( s − 1 ) ) F(s-1,(r-1)(s-1)) F(s1,(r1)(s1)),第13行计算 H 02 H_{02} H02的右侧检验。
例1 在四个不同时间,五个不同地点测得空气中的颗粒状物含量( m g / m 3 mg/m^3 mg/m3)如下

地点 B 1 B_1 B1地点 B 2 B_2 B2地点 B 3 B_3 B3地点 B 4 B_4 B4地点 B 5 B_5 B5
时间 A 1 A_1 A17667815651
时间 A 2 A_2 A28269965970
时间 A 3 A_3 A36859675442
时间 A 4 A_4 A46356645837

假定在第 i i i个时间,第 j j j个地点空气中颗粒物含量服从 N ( μ i j , σ 2 ) N(\mu_{ij},\sigma^2) N(μij,σ2) 1 ≤ i ≤ 4 , 1 ≤ j ≤ 5 1\leq i\leq4,1\leq j\leq5 1i4,1j5。试在显著水平 α = 0.05 \alpha=0.05 α=0.05下检验:在不同时间下颗粒物含量的均值有无显著差异,在不同地点下颗粒物含量的均值有无显著差异。
解: 按题意,需在显著水平 α = 0 , 05 \alpha=0,05 α=0,05下检验
H 01 : μ i ⋅ − μ = 0 , i = 1 , 2 , ⋯ , 4 , H 02 : μ ⋅ j − μ = 0 , j = 1 , 2 , ⋯ , 5. H_{01}:\mu_{i\cdot}-\mu=0,i=1,2,\cdots,4,\\ H_{02}:\mu_{\cdot j}-\mu=0,j=1,2,\cdots,5. H01:μiμ=0,i=1,2,,4,H02:μjμ=0,j=1,2,,5.
下列代码完成本例计算。

import numpy as np					#导入numpy
alpha=0.05							#显著水平
X=np.array([[76, 67, 81, 56, 51],	#试验样本数据[82, 69, 96, 59, 70],[68, 59, 67, 54, 42],[63, 56, 64, 58, 37]])
H0=dfeVarAnal1(X, alpha)			#双因素无重复试验方差分析
print(H0)

运行程序,输出

(False, False)

表示拒绝假设 H 01 H_{01} H01 H 02 H_{02} H02。即时间和地点都显著地影响空气中的颗粒物含量。
写博不易,敬请支持:
如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!
代码诚可贵,原理价更高。若为AI学,读正版书好
返回《导引》

这篇关于概率统计Python计算:双因素无重复试验方差分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1097615

相关文章

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

python常用的正则表达式及作用

《python常用的正则表达式及作用》正则表达式是处理字符串的强大工具,Python通过re模块提供正则表达式支持,本文给大家介绍python常用的正则表达式及作用详解,感兴趣的朋友跟随小编一起看看吧... 目录python常用正则表达式及作用基本匹配模式常用正则表达式示例常用量词边界匹配分组和捕获常用re

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

python删除xml中的w:ascii属性的步骤

《python删除xml中的w:ascii属性的步骤》使用xml.etree.ElementTree删除WordXML中w:ascii属性,需注册命名空间并定位rFonts元素,通过del操作删除属... 可以使用python的XML.etree.ElementTree模块通过以下步骤删除XML中的w:as

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

在Linux终端中统计非二进制文件行数的实现方法

《在Linux终端中统计非二进制文件行数的实现方法》在Linux系统中,有时需要统计非二进制文件(如CSV、TXT文件)的行数,而不希望手动打开文件进行查看,例如,在处理大型日志文件、数据文件时,了解... 目录在linux终端中统计非二进制文件的行数技术背景实现步骤1. 使用wc命令2. 使用grep命令

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到