概率统计Python计算:双因素无重复试验方差分析

2024-08-22 22:48

本文主要是介绍概率统计Python计算:双因素无重复试验方差分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
双因素无重复试验方差分析的数据模型 X X X是一个 r × s r\times s r×s的矩阵, X i j X_{ij} Xij~ N ( μ i j , σ 2 ) N(\mu_{ij},\sigma^2) N(μij,σ2)。令 X ‾ = 1 r s ∑ i = 1 r ∑ j = 1 s X i j \overline{X}=\frac{1}{rs}\sum\limits_{i=1}^r\sum\limits_{j=1}^{s}X_{ij} X=rs1i=1rj=1sXij X ‾ i ⋅ = 1 r ∑ j = 1 s X i j \overline{X}_{i\cdot}=\frac{1}{r}\sum\limits_{j=1}^{s}X_{ij} Xi=r1j=1sXij X ‾ ⋅ j = 1 r ∑ i = 1 r X i j \overline{X}_{\cdot j}=\frac{1}{r}\sum\limits_{i=1}^{r}X_{ij} Xj=r1i=1rXij i = 1 , 2 , ⋅ , r , j = 1 , 2 , ⋯ , s i=1,2,\cdot,r,j=1,2,\cdots,s i=1,2,,r,j=1,2,,s。与双因素等重复试验方差分析相仿,样本数据总变差 S T = ∑ i = 1 r ∑ j = 1 s ( X i j − X ‾ ) 2 S_T=\sum\limits_{i=1}^{r}\sum\limits_{j=1}^{s}(X_{ij}-\overline{X})^2 ST=i=1rj=1s(XijX)2,可分解为因素 A A A的效应平方和 S A = s ∑ i = 1 r ( X ‾ i ⋅ − X ‾ ) 2 S_A=s\sum\limits_{i=1}^{r}(\overline{X}_{i\cdot}-\overline{X})^2 SA=si=1r(XiX)2,因素 B B B的效应平方和 S B = r ∑ j = 1 s ( X ‾ ⋅ j − X ‾ ) 2 S_B=r\sum\limits_{j=1}^{s}(\overline{X}_{\cdot j}-\overline{X})^2 SB=rj=1s(XjX)2,误差平方和 S E = ∑ i = 1 r ∑ j = 1 s ( X i j − X ‾ i ⋅ − X ‾ ⋅ j + X ‾ ) 2 S_E=\sum\limits_{i=1}^{r}\sum\limits_{j=1}^{s}(X_{ij}-\overline{X}_{i\cdot}-\overline{X}_{\cdot j}+\overline{X})^2 SE=i=1rj=1s(XijXiXj+X)2之和,即
S T = S A + S B + S E . S_T=S_A+S_B+S_E. ST=SA+SB+SE.
利用这些数据,希望在显著水平 α \alpha α下检验假设
H 01 : μ i ⋅ − μ = 0 , i = 1 , 2 , ⋯ , r , H 02 : μ ⋅ j − μ = 0 , j = 1 , 2 , ⋯ , s . H_{01}:\mu_{i\cdot}-\mu=0,i=1,2,\cdots,r,\\ H_{02}:\mu_{\cdot j}-\mu=0,j=1,2,\cdots,s. H01:μiμ=0,i=1,2,,r,H02:μjμ=0,j=1,2,,s.
其中, μ i ⋅ = 1 s ∑ j = 1 s μ i j , i = 1 , 2 , ⋯ , r \mu_{i\cdot}=\frac{1}{s}\sum\limits_{j=1}^s\mu_{ij}, i=1,2,\cdots,r μi=s1j=1sμij,i=1,2,,r μ ⋅ j = ∑ i = 1 r μ i j , j = 1 , 2 , ⋯ , s \mu_{\cdot j}=\sum\limits_{i=1}^r\mu_{ij},j=1,2,\cdots,s μj=i=1rμij,j=1,2,,s μ = 1 r s ∑ i = 1 r ∑ j = 1 s μ i j \mu=\frac{1}{rs}\sum\limits_{i=1}^{r}\sum\limits_{j=1}^{s}\mu_{ij} μ=rs1i=1rj=1sμij
下列代码定义计算双因素无重复试验方差分析的函数。

def dfeVarAnal1(X, alpha):r,s=X.shape									#模型数据结构Xi_bar=X.mean(axis=1).reshape(r, 1)			#A因素样本均值Xj_bar=X.mean(axis=0).reshape(1, s)			#B因素样本均值Xt_bar=X.mean()								#样本总均值ST=((X-Xt_bar)**2).sum()					#总变差SA=s*((Xi_bar-Xt_bar)**2).sum()				#A效应平方和SB=r*((Xj_bar-Xt_bar)**2).sum()				#B效应平方和SE=ST-SA-SB									#误差平方和F1=(s-1)*SA/SE								#H01检验统计量值accept1=ftestR(F1, r-1, (r-1)*(s-1), alpha)	#检验H01F2=(r-1)*SB/SE								#H02检验统计量值accept2=ftestR(F2, s-1, (r-1)*(s-1), alpha)	#检验H02return (accept1, accept2)

函数dfeVarAnal1的参数X表示双因素无重复试验方差分析的数据模型 X X X,alpha表示显著水平 α \alpha α。第2行计算数据模型的结构行数s,列数t。第3行计算因素A的各个水平对应的样本均值 ( X ‾ 1 ⋅ , X ‾ 2 ⋅ , ⋯ , X ‾ r ⋅ ) T (\overline{X}_{1\cdot},\overline{X}_{2\cdot},\cdots,\overline{X}_{r\cdot})^T (X1,X2,,Xr)T,第4行计算因素B各水平对应的样本均值 ( X ‾ ⋅ 1 , X ‾ ⋅ 2 , ⋯ , X ‾ ⋅ s ) (\overline{X}_{\cdot1},\overline{X}_{\cdot2},\cdots,\overline{X}_{\cdot s}) (X1,X2,,Xs),第5行计算样本总均值 X ‾ \overline{X} X,第6~9行分别计算 S T S_T ST S A S_A SA S B S_B SB S E S_E SE。第10行计算假设 H 01 H_{01} H01的检验统计量值 S A / ( r − 1 ) S E / ( r − 1 ) ( s − 1 ) \frac{S_A/(r-1)}{S_E/(r-1)(s-1)} SE/(r1)(s1)SA/(r1)~ F ( r − 1 , ( r − 1 ) ( s − 1 ) ) F(r-1,(r-1)(s-1)) F(r1,(r1)(s1)),第11行调用函数ftestR计算 H 01 H_{01} H01的右侧检验。第12行计算 H 02 H_{02} H02的检验统计量 S B / ( s − 1 ) S E / ( r − 1 ) ( s − 1 ) \frac{S_B/(s-1)}{S_E/(r-1)(s-1)} SE/(r1)(s1)SB/(s1)~ F ( s − 1 , ( r − 1 ) ( s − 1 ) ) F(s-1,(r-1)(s-1)) F(s1,(r1)(s1)),第13行计算 H 02 H_{02} H02的右侧检验。
例1 在四个不同时间,五个不同地点测得空气中的颗粒状物含量( m g / m 3 mg/m^3 mg/m3)如下

地点 B 1 B_1 B1地点 B 2 B_2 B2地点 B 3 B_3 B3地点 B 4 B_4 B4地点 B 5 B_5 B5
时间 A 1 A_1 A17667815651
时间 A 2 A_2 A28269965970
时间 A 3 A_3 A36859675442
时间 A 4 A_4 A46356645837

假定在第 i i i个时间,第 j j j个地点空气中颗粒物含量服从 N ( μ i j , σ 2 ) N(\mu_{ij},\sigma^2) N(μij,σ2) 1 ≤ i ≤ 4 , 1 ≤ j ≤ 5 1\leq i\leq4,1\leq j\leq5 1i4,1j5。试在显著水平 α = 0.05 \alpha=0.05 α=0.05下检验:在不同时间下颗粒物含量的均值有无显著差异,在不同地点下颗粒物含量的均值有无显著差异。
解: 按题意,需在显著水平 α = 0 , 05 \alpha=0,05 α=0,05下检验
H 01 : μ i ⋅ − μ = 0 , i = 1 , 2 , ⋯ , 4 , H 02 : μ ⋅ j − μ = 0 , j = 1 , 2 , ⋯ , 5. H_{01}:\mu_{i\cdot}-\mu=0,i=1,2,\cdots,4,\\ H_{02}:\mu_{\cdot j}-\mu=0,j=1,2,\cdots,5. H01:μiμ=0,i=1,2,,4,H02:μjμ=0,j=1,2,,5.
下列代码完成本例计算。

import numpy as np					#导入numpy
alpha=0.05							#显著水平
X=np.array([[76, 67, 81, 56, 51],	#试验样本数据[82, 69, 96, 59, 70],[68, 59, 67, 54, 42],[63, 56, 64, 58, 37]])
H0=dfeVarAnal1(X, alpha)			#双因素无重复试验方差分析
print(H0)

运行程序,输出

(False, False)

表示拒绝假设 H 01 H_{01} H01 H 02 H_{02} H02。即时间和地点都显著地影响空气中的颗粒物含量。
写博不易,敬请支持:
如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!
代码诚可贵,原理价更高。若为AI学,读正版书好
返回《导引》

这篇关于概率统计Python计算:双因素无重复试验方差分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1097615

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

hdu1496(用hash思想统计数目)

作为一个刚学hash的孩子,感觉这道题目很不错,灵活的运用的数组的下标。 解题步骤:如果用常规方法解,那么时间复杂度为O(n^4),肯定会超时,然后参考了网上的解题方法,将等式分成两个部分,a*x1^2+b*x2^2和c*x3^2+d*x4^2, 各自作为数组的下标,如果两部分相加为0,则满足等式; 代码如下: #include<iostream>#include<algorithm

hdu4865(概率DP)

题意:已知前一天和今天的天气概率,某天的天气概率和叶子的潮湿程度的概率,n天叶子的湿度,求n天最有可能的天气情况。 思路:概率DP,dp[i][j]表示第i天天气为j的概率,状态转移如下:dp[i][j] = max(dp[i][j, dp[i-1][k]*table2[k][j]*table1[j][col] )  代码如下: #include <stdio.h>#include

poj2406(连续重复子串)

题意:判断串s是不是str^n,求str的最大长度。 解题思路:kmp可解,后缀数组的倍增算法超时。next[i]表示在第i位匹配失败后,自动跳转到next[i],所以1到next[n]这个串 等于 n-next[n]+1到n这个串。 代码如下; #include<iostream>#include<algorithm>#include<stdio.h>#include<math.

poj3261(可重复k次的最长子串)

题意:可重复k次的最长子串 解题思路:求所有区间[x,x+k-1]中的最小值的最大值。求sa时间复杂度Nlog(N),求最值时间复杂度N*N,但实际复杂度很低。题目数据也比较水,不然估计过不了。 代码入下: #include<iostream>#include<algorithm>#include<stdio.h>#include<math.h>#include<cstring

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

poj 1113 凸包+简单几何计算

题意: 给N个平面上的点,现在要在离点外L米处建城墙,使得城墙把所有点都包含进去且城墙的长度最短。 解析: 韬哥出的某次训练赛上A出的第一道计算几何,算是大水题吧。 用convexhull算法把凸包求出来,然后加加减减就A了。 计算见下图: 好久没玩画图了啊好开心。 代码: #include <iostream>#include <cstdio>#inclu

uva 1342 欧拉定理(计算几何模板)

题意: 给几个点,把这几个点用直线连起来,求这些直线把平面分成了几个。 解析: 欧拉定理: 顶点数 + 面数 - 边数= 2。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

uva 11178 计算集合模板题

题意: 求三角形行三个角三等分点射线交出的内三角形坐标。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <