概率统计Python计算:双因素无重复试验方差分析

2024-08-22 22:48

本文主要是介绍概率统计Python计算:双因素无重复试验方差分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
双因素无重复试验方差分析的数据模型 X X X是一个 r × s r\times s r×s的矩阵, X i j X_{ij} Xij~ N ( μ i j , σ 2 ) N(\mu_{ij},\sigma^2) N(μij,σ2)。令 X ‾ = 1 r s ∑ i = 1 r ∑ j = 1 s X i j \overline{X}=\frac{1}{rs}\sum\limits_{i=1}^r\sum\limits_{j=1}^{s}X_{ij} X=rs1i=1rj=1sXij X ‾ i ⋅ = 1 r ∑ j = 1 s X i j \overline{X}_{i\cdot}=\frac{1}{r}\sum\limits_{j=1}^{s}X_{ij} Xi=r1j=1sXij X ‾ ⋅ j = 1 r ∑ i = 1 r X i j \overline{X}_{\cdot j}=\frac{1}{r}\sum\limits_{i=1}^{r}X_{ij} Xj=r1i=1rXij i = 1 , 2 , ⋅ , r , j = 1 , 2 , ⋯ , s i=1,2,\cdot,r,j=1,2,\cdots,s i=1,2,,r,j=1,2,,s。与双因素等重复试验方差分析相仿,样本数据总变差 S T = ∑ i = 1 r ∑ j = 1 s ( X i j − X ‾ ) 2 S_T=\sum\limits_{i=1}^{r}\sum\limits_{j=1}^{s}(X_{ij}-\overline{X})^2 ST=i=1rj=1s(XijX)2,可分解为因素 A A A的效应平方和 S A = s ∑ i = 1 r ( X ‾ i ⋅ − X ‾ ) 2 S_A=s\sum\limits_{i=1}^{r}(\overline{X}_{i\cdot}-\overline{X})^2 SA=si=1r(XiX)2,因素 B B B的效应平方和 S B = r ∑ j = 1 s ( X ‾ ⋅ j − X ‾ ) 2 S_B=r\sum\limits_{j=1}^{s}(\overline{X}_{\cdot j}-\overline{X})^2 SB=rj=1s(XjX)2,误差平方和 S E = ∑ i = 1 r ∑ j = 1 s ( X i j − X ‾ i ⋅ − X ‾ ⋅ j + X ‾ ) 2 S_E=\sum\limits_{i=1}^{r}\sum\limits_{j=1}^{s}(X_{ij}-\overline{X}_{i\cdot}-\overline{X}_{\cdot j}+\overline{X})^2 SE=i=1rj=1s(XijXiXj+X)2之和,即
S T = S A + S B + S E . S_T=S_A+S_B+S_E. ST=SA+SB+SE.
利用这些数据,希望在显著水平 α \alpha α下检验假设
H 01 : μ i ⋅ − μ = 0 , i = 1 , 2 , ⋯ , r , H 02 : μ ⋅ j − μ = 0 , j = 1 , 2 , ⋯ , s . H_{01}:\mu_{i\cdot}-\mu=0,i=1,2,\cdots,r,\\ H_{02}:\mu_{\cdot j}-\mu=0,j=1,2,\cdots,s. H01:μiμ=0,i=1,2,,r,H02:μjμ=0,j=1,2,,s.
其中, μ i ⋅ = 1 s ∑ j = 1 s μ i j , i = 1 , 2 , ⋯ , r \mu_{i\cdot}=\frac{1}{s}\sum\limits_{j=1}^s\mu_{ij}, i=1,2,\cdots,r μi=s1j=1sμij,i=1,2,,r μ ⋅ j = ∑ i = 1 r μ i j , j = 1 , 2 , ⋯ , s \mu_{\cdot j}=\sum\limits_{i=1}^r\mu_{ij},j=1,2,\cdots,s μj=i=1rμij,j=1,2,,s μ = 1 r s ∑ i = 1 r ∑ j = 1 s μ i j \mu=\frac{1}{rs}\sum\limits_{i=1}^{r}\sum\limits_{j=1}^{s}\mu_{ij} μ=rs1i=1rj=1sμij
下列代码定义计算双因素无重复试验方差分析的函数。

def dfeVarAnal1(X, alpha):r,s=X.shape									#模型数据结构Xi_bar=X.mean(axis=1).reshape(r, 1)			#A因素样本均值Xj_bar=X.mean(axis=0).reshape(1, s)			#B因素样本均值Xt_bar=X.mean()								#样本总均值ST=((X-Xt_bar)**2).sum()					#总变差SA=s*((Xi_bar-Xt_bar)**2).sum()				#A效应平方和SB=r*((Xj_bar-Xt_bar)**2).sum()				#B效应平方和SE=ST-SA-SB									#误差平方和F1=(s-1)*SA/SE								#H01检验统计量值accept1=ftestR(F1, r-1, (r-1)*(s-1), alpha)	#检验H01F2=(r-1)*SB/SE								#H02检验统计量值accept2=ftestR(F2, s-1, (r-1)*(s-1), alpha)	#检验H02return (accept1, accept2)

函数dfeVarAnal1的参数X表示双因素无重复试验方差分析的数据模型 X X X,alpha表示显著水平 α \alpha α。第2行计算数据模型的结构行数s,列数t。第3行计算因素A的各个水平对应的样本均值 ( X ‾ 1 ⋅ , X ‾ 2 ⋅ , ⋯ , X ‾ r ⋅ ) T (\overline{X}_{1\cdot},\overline{X}_{2\cdot},\cdots,\overline{X}_{r\cdot})^T (X1,X2,,Xr)T,第4行计算因素B各水平对应的样本均值 ( X ‾ ⋅ 1 , X ‾ ⋅ 2 , ⋯ , X ‾ ⋅ s ) (\overline{X}_{\cdot1},\overline{X}_{\cdot2},\cdots,\overline{X}_{\cdot s}) (X1,X2,,Xs),第5行计算样本总均值 X ‾ \overline{X} X,第6~9行分别计算 S T S_T ST S A S_A SA S B S_B SB S E S_E SE。第10行计算假设 H 01 H_{01} H01的检验统计量值 S A / ( r − 1 ) S E / ( r − 1 ) ( s − 1 ) \frac{S_A/(r-1)}{S_E/(r-1)(s-1)} SE/(r1)(s1)SA/(r1)~ F ( r − 1 , ( r − 1 ) ( s − 1 ) ) F(r-1,(r-1)(s-1)) F(r1,(r1)(s1)),第11行调用函数ftestR计算 H 01 H_{01} H01的右侧检验。第12行计算 H 02 H_{02} H02的检验统计量 S B / ( s − 1 ) S E / ( r − 1 ) ( s − 1 ) \frac{S_B/(s-1)}{S_E/(r-1)(s-1)} SE/(r1)(s1)SB/(s1)~ F ( s − 1 , ( r − 1 ) ( s − 1 ) ) F(s-1,(r-1)(s-1)) F(s1,(r1)(s1)),第13行计算 H 02 H_{02} H02的右侧检验。
例1 在四个不同时间,五个不同地点测得空气中的颗粒状物含量( m g / m 3 mg/m^3 mg/m3)如下

地点 B 1 B_1 B1地点 B 2 B_2 B2地点 B 3 B_3 B3地点 B 4 B_4 B4地点 B 5 B_5 B5
时间 A 1 A_1 A17667815651
时间 A 2 A_2 A28269965970
时间 A 3 A_3 A36859675442
时间 A 4 A_4 A46356645837

假定在第 i i i个时间,第 j j j个地点空气中颗粒物含量服从 N ( μ i j , σ 2 ) N(\mu_{ij},\sigma^2) N(μij,σ2) 1 ≤ i ≤ 4 , 1 ≤ j ≤ 5 1\leq i\leq4,1\leq j\leq5 1i4,1j5。试在显著水平 α = 0.05 \alpha=0.05 α=0.05下检验:在不同时间下颗粒物含量的均值有无显著差异,在不同地点下颗粒物含量的均值有无显著差异。
解: 按题意,需在显著水平 α = 0 , 05 \alpha=0,05 α=0,05下检验
H 01 : μ i ⋅ − μ = 0 , i = 1 , 2 , ⋯ , 4 , H 02 : μ ⋅ j − μ = 0 , j = 1 , 2 , ⋯ , 5. H_{01}:\mu_{i\cdot}-\mu=0,i=1,2,\cdots,4,\\ H_{02}:\mu_{\cdot j}-\mu=0,j=1,2,\cdots,5. H01:μiμ=0,i=1,2,,4,H02:μjμ=0,j=1,2,,5.
下列代码完成本例计算。

import numpy as np					#导入numpy
alpha=0.05							#显著水平
X=np.array([[76, 67, 81, 56, 51],	#试验样本数据[82, 69, 96, 59, 70],[68, 59, 67, 54, 42],[63, 56, 64, 58, 37]])
H0=dfeVarAnal1(X, alpha)			#双因素无重复试验方差分析
print(H0)

运行程序,输出

(False, False)

表示拒绝假设 H 01 H_{01} H01 H 02 H_{02} H02。即时间和地点都显著地影响空气中的颗粒物含量。
写博不易,敬请支持:
如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!
代码诚可贵,原理价更高。若为AI学,读正版书好
返回《导引》

这篇关于概率统计Python计算:双因素无重复试验方差分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1097615

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(