协方差详解及在日常生活中的应用实例——天气温度与冰淇淋销量的关系

本文主要是介绍协方差详解及在日常生活中的应用实例——天气温度与冰淇淋销量的关系,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

协方差详解及在日常生活中的应用实例——天气温度与冰淇淋销量的关系



文章目录

  • 协方差详解及在日常生活中的应用实例——天气温度与冰淇淋销量的关系
    • 引言
    • 协方差的概念与背景
    • 数学公式推导
    • 实例背景
    • 数据收集
    • 计算过程
    • 结果解释
    • 计算相关系数
    • 为什么使用协方差?
    • 结论
    • 商业启示


引言

在日常生活中,我们经常会遇到需要分析两个变量之间关系的情况。其中一个重要的统计量就是协方差,它可以帮助我们理解两个变量之间的线性关系方向和强度。本文将通过一个具体的实例——天气温度与冰淇淋销量之间的关系——来探讨协方差的应用,并详细介绍协方差的概念、背景、数学公式推导等内容。此外,我们还将讨论与协方差类似的概念,并探讨何时使用协方差以及为什么选择使用协方差。

协方差的概念与背景

定义:协方差是一个统计量,用于衡量两个变量之间线性关系的方向和强度。如果两个变量的值倾向于同时增加或减少,则它们具有正协方差;如果一个变量增加而另一个变量减少,则它们具有负协方差。协方差的值越大,表示两个变量之间的线性关系越强。

背景:在数据分析和统计建模中,了解两个变量间的关系是非常重要的。协方差提供了一种量化这种关系的方法。例如,在金融领域,协方差可以帮助投资者了解不同资产价格变动的趋势是否一致,这对于构建有效的投资组合非常重要。在本例中,我们将利用协方差来探索天气温度与冰淇淋销量之间的关系。

数学公式推导

设有两个随机变量 X X X Y Y Y,它们分别有一组观测值 x 1 , x 2 , … , x n x_1, x_2, \ldots, x_n x1,x2,,xn y 1 , y 2 , … , y n y_1, y_2, \ldots, y_n y1,y2,,yn。则 X X X Y Y Y 的协方差定义为:
Cov ( X , Y ) = 1 n ∑ i = 1 n ( x i − x ˉ ) ( y i − y ˉ ) \text{Cov}(X, Y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) Cov(X,Y)=n1i=1n(xixˉ)(yiyˉ)
其中, x ˉ \bar{x} xˉ y ˉ \bar{y} yˉ 分别表示 X X X Y Y Y 的样本均值。

这个公式可以分解成以下几个步骤:

  1. 计算均值:对于每个变量,计算其样本均值。

    • x ˉ = 1 n ∑ i = 1 n x i \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i xˉ=n1i=1nxi
    • y ˉ = 1 n ∑ i = 1 n y i \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i yˉ=n1i=1nyi
  2. 计算偏差:对于每个数据点 ( x i , y i ) (x_i, y_i) (xi,yi),计算其与相应变量均值的偏差。

    • d x ( i ) = x i − x ˉ d_x(i) = x_i - \bar{x} dx(i)=xixˉ
    • d y ( i ) = y i − y ˉ d_y(i) = y_i - \bar{y} dy(i)=yiyˉ
  3. 计算乘积并求和:将每个数据点的偏差相乘,然后求和。

    • p i = d x ( i ) ⋅ d y ( i ) p_i = d_x(i) \cdot d_y(i) pi=dx(i)dy(i)
    • Cov ( X , Y ) = 1 n ∑ i = 1 n p i \text{Cov}(X, Y) = \frac{1}{n} \sum_{i=1}^{n} p_i Cov(X,Y)=n1i=1npi

实例背景

假设你经营着一家冰淇淋店,并希望了解天气温度与冰淇淋销量之间的关系。通过收集一个月的数据,我们可以分析这两者之间的相关性,以便更好地规划库存和调整销售策略。

数据收集

我们收集了连续30天的温度(以摄氏度为单位)和对应的冰淇淋销量(以销售数量为单位)数据:

天数温度 (°C)冰淇淋销量
120100
222120
325140
426150
523125
624130
727160
828170
929180
1030190
1126155
1227165
1325145
1423120
1522110
1624130
1725145
1826155
1927165
2028175
2129185
2230195
2328170
2427160
2526150
2625140
2724130
2823120
2922110
3021100

计算过程

  1. 计算均值:

    • 温度均值 ( T ˉ \bar{T} Tˉ) = 20 + 22 + 25 + … + 21 30 \frac{20 + 22 + 25 + \ldots + 21}{30} 3020+22+25++21 ≈ 25.4
    • 销量均值 ( V ˉ \bar{V} Vˉ) = 100 + 120 + 140 + … + 100 30 \frac{100 + 120 + 140 + \ldots + 100}{30} 30100+120+140++100 ≈ 146.33
  2. 计算协方差:

    • 使用协方差公式: Cov ( T , V ) = 1 n ∑ i = 1 n ( t i − T ˉ ) ( v i − V ˉ ) \text{Cov}(T, V) = \frac{1}{n} \sum_{i=1}^{n} (t_i - \bar{T})(v_i - \bar{V}) Cov(T,V)=n1i=1n(tiTˉ)(viVˉ)
  3. 实际计算:

    • 以第一组数据为例:

      • 温度偏差 d T ( 1 ) = 20 − 25.4 = − 5.4 d_T(1) = 20 - 25.4 = -5.4 dT(1)=2025.4=5.4
      • 销量偏差 d V ( 1 ) = 100 − 146.33 = − 46.33 d_V(1) = 100 - 146.33 = -46.33 dV(1)=100146.33=46.33
      • 乘积 p 1 = ( − 5.4 ) × ( − 46.33 ) = 250.182 p_1 = (-5.4) \times (-46.33) = 250.182 p1=(5.4)×(46.33)=250.182
    • 重复此过程,计算所有数据点的乘积并求和,然后除以数据点的数量 n n n

  4. 结果:

    • 经过计算,我们得到温度和销量之间的协方差大约为 70.48。

结果解释

  • 方向:由于协方差为正(70.48),这意味着温度和冰淇淋销量之间存在正向的线性关系。也就是说,随着温度的升高,冰淇淋销量也会增加。
  • 强度:仅凭协方差的值 70.48,我们不能直接判断这种关系的强度。为了更好地理解这种关系的强度,我们可以计算皮尔逊相关系数,它是协方差除以两个变量标准差的乘积。

计算相关系数

为了计算相关系数,我们需要知道温度和销量的标准差。假设我们已经计算出温度的标准差为 2.67,销量的标准差为 26.55。

  • 相关系数
    r = Cov ( T , V ) σ T ⋅ σ V = 70.48 2.67 × 26.55 ≈ 0.994 r = \frac{\text{Cov}(T, V)}{\sigma_T \cdot \sigma_V} = \frac{70.48}{2.67 \times 26.55} \approx 0.994 r=σTσVCov(T,V)=2.67×26.5570.480.994

这里我们得到了一个接近1的值,这意味着温度和销量之间存在非常强的正相关关系。其中, σ T \sigma_T σT σ V \sigma_V σV分别表示 T T T V V V的标准差。

为什么使用协方差?

尽管协方差可以提供关于两个变量之间线性关系方向的信息,但它有几个局限性:

  • 尺度依赖性:协方差的值受到变量尺度的影响,这意味着变量单位的不同会导致协方差值的差异。
  • 缺乏标准化:协方差值本身并不能直接告诉我们变量之间线性关系的强度。

替代概念

  • 皮尔逊相关系数:这是一个标准化的度量,消除了变量尺度的影响,并且取值范围为 [ − 1 , 1 ] [-1, 1] [1,1]。它可以更直观地反映变量之间的线性关系强度。
  • 斯皮尔曼等级相关系数:适用于非线性关系的度量,特别是在变量不是正态分布的情况下。
  • 肯德尔等级相关系数:类似于斯皮尔曼等级相关系数,但更适用于小样本情况。

何时使用协方差

  • 初步分析:在进行初步的数据探索时,协方差可以快速提供变量间关系的方向信息。
  • 联合分布:协方差矩阵在多元统计分析中非常有用,特别是在主成分分析、因子分析等高级统计方法中。

为什么选择协方差

  • 简单易用:协方差的计算相对简单,不需要复杂的数学知识。
  • 基础统计量:协方差是许多高级统计方法的基础,例如主成分分析等。

结论

通过分析,我们可以得出结论:

  • 当温度升高时,冰淇淋销量也会显著增加。这表明在炎热的日子里,顾客更倾向于购买冰淇淋。
  • 这种正相关关系非常强,相关系数接近 1,表明温度是影响冰淇淋销量的关键因素之一。

商业启示

基于这些发现,你可以采取相应的措施来优化业务运营,比如:

  • 在预测到气温较高的日子时,提前准备更多的冰淇淋库存。
  • 根据温度变化调整营销策略和促销活动。

这篇关于协方差详解及在日常生活中的应用实例——天气温度与冰淇淋销量的关系的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1096584

相关文章

Debezium 与 Apache Kafka 的集成方式步骤详解

《Debezium与ApacheKafka的集成方式步骤详解》本文详细介绍了如何将Debezium与ApacheKafka集成,包括集成概述、步骤、注意事项等,通过KafkaConnect,D... 目录一、集成概述二、集成步骤1. 准备 Kafka 环境2. 配置 Kafka Connect3. 安装 D

Java中ArrayList和LinkedList有什么区别举例详解

《Java中ArrayList和LinkedList有什么区别举例详解》:本文主要介绍Java中ArrayList和LinkedList区别的相关资料,包括数据结构特性、核心操作性能、内存与GC影... 目录一、底层数据结构二、核心操作性能对比三、内存与 GC 影响四、扩容机制五、线程安全与并发方案六、工程

Spring Cloud LoadBalancer 负载均衡详解

《SpringCloudLoadBalancer负载均衡详解》本文介绍了如何在SpringCloud中使用SpringCloudLoadBalancer实现客户端负载均衡,并详细讲解了轮询策略和... 目录1. 在 idea 上运行多个服务2. 问题引入3. 负载均衡4. Spring Cloud Load

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud

前端原生js实现拖拽排课效果实例

《前端原生js实现拖拽排课效果实例》:本文主要介绍如何实现一个简单的课程表拖拽功能,通过HTML、CSS和JavaScript的配合,我们实现了课程项的拖拽、放置和显示功能,文中通过实例代码介绍的... 目录1. 效果展示2. 效果分析2.1 关键点2.2 实现方法3. 代码实现3.1 html部分3.2

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

SQL 中多表查询的常见连接方式详解

《SQL中多表查询的常见连接方式详解》本文介绍SQL中多表查询的常见连接方式,包括内连接(INNERJOIN)、左连接(LEFTJOIN)、右连接(RIGHTJOIN)、全外连接(FULLOUTER... 目录一、连接类型图表(ASCII 形式)二、前置代码(创建示例表)三、连接方式代码示例1. 内连接(I

Go路由注册方法详解

《Go路由注册方法详解》Go语言中,http.NewServeMux()和http.HandleFunc()是两种不同的路由注册方式,前者创建独立的ServeMux实例,适合模块化和分层路由,灵活性高... 目录Go路由注册方法1. 路由注册的方式2. 路由器的独立性3. 灵活性4. 启动服务器的方式5.

Java中八大包装类举例详解(通俗易懂)

《Java中八大包装类举例详解(通俗易懂)》:本文主要介绍Java中的包装类,包括它们的作用、特点、用途以及如何进行装箱和拆箱,包装类还提供了许多实用方法,如转换、获取基本类型值、比较和类型检测,... 目录一、包装类(Wrapper Class)1、简要介绍2、包装类特点3、包装类用途二、装箱和拆箱1、装