本文主要是介绍DenseNet模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
《Densely Connected Convolutional Networks》阅读笔记
代码地址:https://github.com/liuzhuang13/DenseNet
首先看一张图:
稠密连接:每层以之前层的输出为输入,对于有L层的传统网络,一共有 L 个连接,对于DenseNet,则有
这篇论文主要参考了Highway Networks,Residual Networks (ResNets)以及GoogLeNet,通过加深网络结构,提升分类结果。加深网络结构首先需要解决的是梯度消失问题,解决方案是:尽量缩短前层和后层之间的连接。比如上图中, H4 层可以直接用到原始输入信息 X0 ,同时还用到了之前层对 X0 处理后的信息,这样能够最大化信息的流动。反向传播过程中, X0 的梯度信息包含了损失函数直接对 X0 的导数,有利于梯度传播。
DenseNet有如下优点:
1.有效解决梯度消失问题
2.强化特征传播
3.支持特征重用
4.大幅度减少参数数量
接着说下论文中一直提到的Identity function:
很简单 就是输出等于输入 f(x)=x
传统的前馈网络结构可以看成处理网络状态(特征图?)的算法,状态从层之间传递,每个层从之前层读入状态,然后写入之后层,可能会改变状态,也会保持传递不变的信息。ResNet是通过Identity transformations来明确传递这种不变信息。
网络结构:
每层实现了一组非线性变换 Hl(.) ,可以是Batch Normalization (BN) ,rectified linear units (ReLU) , Pooling , or Convolution (Conv). 第 l 层的输出为
对于ResNet:
这样做的好处是the gradient flows directly through the identity function from later layers to the earlier layers.
同时呢,由于identity function 和 H的输出通过相加的方式结合,会妨碍信息在整个网络的传播。
受GooLeNet的启发,DenseNet通过串联的方式结合:
这里 Hl(.) 是一个Composite function,是三个操作的组合: BN−>ReLU−>Conv(3×3)
由于串联操作要求特征图 x0,x1,...,xl−1 大小一致,而Pooling操作会改变特征图的大小,又不可或缺,于是就有了上图中的分块想法,其实这个想法类似于VGG模型中的“卷积栈”的做法。论文中称每个块为DenseBlock。每个DenseBlock的之间层称为transition layers,由 BN−>Conv(1×1)−>averagePooling(2×2) 组成。
Growth rate:由于每个层的输入是所有之前层输出的连接,因此每个层的输出不需要像传统网络一样多。这里 Hl(.) 的输出的特征图的数量都为 k ,
虽然说每个层只产生 k 个输出,但是后面层的输入依然会很多,因此引入了Bottleneck layers 。本质上是引入1x1的卷积层来减少输入的数量,
文中将带有Bottleneck layers的网络结构称为DenseNet-B。
除了在DenseBlock内部减少特征图的数量,还可以在transition layers中来进一步Compression。如果一个DenseNet有m个特征图的输出,则transition layer产生 ⌊θm⌋ 个输出,其中 0<θ≤1 。对于含有该操作的网络结构称为DenseNet-C。
同时包含Bottleneck layer和Compression的网络结构为DenseNet-BC。
具体的网络结构:
实验以及一些结论
在CIFAR和SVHN上的分类结果(错误率):
L 表示网络深度,
接着看一组对比图:
前两组描述分类错误率与参数量的对比,从第二幅可以看出,在取得相同分类精度的情况下,DenseNet-BC比ResNet少了 23 的参数。第三幅图描述含有10M参数的1001层的ResNet与只有0.8M的100层的DenseNet的训练曲线图。可以发现ResNet可以收敛到更小的loss值,但是最终的test error与DenseNet相差无几。再次说明了DenseNet参数效率(Parameter Efficiency)很高!
同样的在ImageNet上的分类结果:
右图使用FLOPS来说明计算量。通过比较ResNet-50,DenseNet-201,ResNet-101,说明计算量方面,DenseNet结果更好。
这篇关于DenseNet模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!