半直接法视觉里程计(SVO)实践

2024-08-22 10:18

本文主要是介绍半直接法视觉里程计(SVO)实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文主要分两部分,编译安装SVO后对官方数据集的测试以及实验室摄像头的测试。

一.SVO安装及测试

在官方github首页上有比较详细的安装说明,不过部分步骤略有问题,此处给出成功安装的步骤。操作系统为ubuntu16.04并且安装ROS系统。

共创建两个工作空间,一个存放各种库,包括fastg2o以及Sophus,另一个存放SVO代码。

1.安装Sophus库

按照步骤即可

cd workspace

git clone https://github.com/strasdat/Sophus.git

cd Sophus

git checkout a621ff

mkdir build

cd build

cmake ..

make

2.安装角点检测库

同样按照步骤即可

cd workspace

git clone https://github.com/uzh-rpg/fast.git

cd fast

mkdir build

cd build

cmake ..

make

3.安装g2o库(选择性)

这一步同样按照官网步骤即可,另外需要安装的依赖库有cmake, libeigen3-dev, libsuitesparse-dev, libqt4-dev, qt4-qmake, libqglviewer-qt4-dev,使用apt-get安装即可。

cd workspace

git clone https://github.com/RainerKuemmerle/g2o.git

cd g2o

mkdir build

cd build

cmake ..

make

sudo make install

需要注意的是,按照官方说明安装的eigen库并不能在当前SVO版本中工作,解决办法是安装eigen3.2.10。(此问题在github上的issue栏中有说明)eigen下载链接

http://bitbucket.org/eigen/eigen/get/3.2.10.tar.bz2

下载后运行如下命令编译安装

tar -xf [name of the file]

cd [name of the file]

mkdir build

cd build

cmake ..

sudo make install

4.按照官网安装vikit和ROS依赖项

cd catkin_ws/src

git clone https://github.com/uzh-rpg/rpg_vikit.git

sudo apt-get install ros-hydro-cmake-modules

命令中将hydro替换为自己对应的发行版即可,此处为kinect

5.编译代码

cd catkin_ws/src

git clone https://github.com/uzh-rpg/rpg_svo.git

如果安装了g2o则需要将svo/CMakeLists.txt文件中的HAVE_G2O变量置为TRUE,添加环境变量G2O_ROOT

gedit  ~/.bashrc

添加export G2O_ROOT = $HOME/SLAM/SVO/g2o

使用catkin_make编译SVO代码。

6.测试数据集

下载地址 

rpg.ifi.uzh.ch/datasets/airground_rig_s3_2013-03-18_21-38-48.bag

一共需要开启四个命令行窗口,首先启动ROS,运行roscore

然后是roslaunch svo_ros test_rig3.launch,运行此命令前需要运行source devel/setup.bash

再然后是运行

rosrun rviz rviz -d <PATH TO rpg_svo>/svo_ros/rviz_config.rviz

开启GUI查看结果。

最后运行

rosbag play airground_rig_s3_2013-03-18_21-38-48.bag

加载数据集,可以在GUI中看到数据集运行的效果。

二.摄像头测试

测试摄像头前需要标定,使用atan模型的效果较好,可以在PTAM中进行摄像头的标定,不过由于PTAM没有安装成功,因此这里使用SVO中原有的参数,只要在参数文件中把图像宽度和高度做修改即可。

1.图像采集

使用ROS提供的usb camera节点程序采集摄像头图像,下载编译后运行

rosrun usb_cam usb_cam_node开始采集图像并发布,运行如下命令查看原始彩色图像

rosrun image_view image_view image:=/usb_cam/image_raw

2.图像转换

SVO使用的图像为单通道灰度图,摄像头输出为RGB彩色图像,因此还需要一个节点程序订阅彩色图像后转换成灰度图并发布。创建ROS节点程序可以参考:

http://www.cnblogs.com/blue35sky/p/6078771.html

注意创建时添加对应的依赖项,如opencv相关的依赖项cv_bridgeimage_transport。转换后的图像为/mono_image,运行图像转换程序

rosrun cam_test cam_test_node并在第一步查看图像命令中修改需要查看的图像主题名即可看到灰度图像。

转换代码:

#include <ros/ros.h>
#include <opencv2/opencv.hpp>
#include <opencv/cv.h>
#include <opencv/highgui.h>
#include <image_transport/image_transport.h>
#include <cv_bridge/cv_bridge.h>
#include <sensor_msgs/image_encodings.h>
#include "ros/ros.h"
#include "std_msgs/String.h"ros::Publisher image_pub ;void chatterCallback(const sensor_msgs::ImageConstPtr& msg)
{cv_bridge::CvImagePtr  cv_ptr;cv_ptr = cv_bridge::toCvCopy(msg,sensor_msgs::image_encodings::BGR8);cv::Mat image_gray;cv::cvtColor(cv_ptr->image, image_gray,CV_BGR2GRAY);//灰度化cv_bridge::CvImage  cvi;sensor_msgs::Image  ros_img;ros::Time time=ros::Time::now();cvi.header.stamp = time;cvi.header.frame_id = "image";cvi.encoding = "mono8";cvi.image = image_gray;cvi.toImageMsg(ros_img);image_pub.publish(cvi.toImageMsg());
}int main(int argc, char **argv)
{ros::init(argc, argv, "img_tran");ros::NodeHandle n;ros::Subscriber sub = n.subscribe("/usb_cam/image_raw", 1000, chatterCallback);image_pub = n.advertise<sensor_msgs::Image>("/mono_image", 1000);ros::spin();return 0;
}

3.启动SVO测试

可以直接在原有的test_rig3.launch文件中稍作修改后启动SVO,将摄像头主题的值修改为/mono_image,即上一步发布的灰度图。下面的摄像头校准文件,如果做了校准,可以写成param文件夹中文件的格式,之后在启动文件中将摄像头校准文件参数改成自己的文件就好。一般情况下只有这两处需要修改,之后就可以启动SVO,启动GUI查看位姿估计结果。这里由于摄像头没有校准,因此成功率不高,经常提示特征点太少,不过成功的情况下位姿估计效果还是不错的。

这篇关于半直接法视觉里程计(SVO)实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1095984

相关文章

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

防止Linux rm命令误操作的多场景防护方案与实践

《防止Linuxrm命令误操作的多场景防护方案与实践》在Linux系统中,rm命令是删除文件和目录的高效工具,但一旦误操作,如执行rm-rf/或rm-rf/*,极易导致系统数据灾难,本文针对不同场景... 目录引言理解 rm 命令及误操作风险rm 命令基础常见误操作案例防护方案使用 rm编程 别名及安全删除

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

MySQL分库分表的实践示例

《MySQL分库分表的实践示例》MySQL分库分表适用于数据量大或并发压力高的场景,核心技术包括水平/垂直分片和分库,需应对分布式事务、跨库查询等挑战,通过中间件和解决方案实现,最佳实践为合理策略、备... 目录一、分库分表的触发条件1.1 数据量阈值1.2 并发压力二、分库分表的核心技术模块2.1 水平分

SpringBoot通过main方法启动web项目实践

《SpringBoot通过main方法启动web项目实践》SpringBoot通过SpringApplication.run()启动Web项目,自动推断应用类型,加载初始化器与监听器,配置Spring... 目录1. 启动入口:SpringApplication.run()2. SpringApplicat

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro

linux安装、更新、卸载anaconda实践

《linux安装、更新、卸载anaconda实践》Anaconda是基于conda的科学计算环境,集成1400+包及依赖,安装需下载脚本、接受协议、设置路径、配置环境变量,更新与卸载通过conda命令... 目录随意找一个目录下载安装脚本检查许可证协议,ENTER就可以安装完毕之后激活anaconda安装更