半直接法视觉里程计(SVO)实践

2024-08-22 10:18

本文主要是介绍半直接法视觉里程计(SVO)实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文主要分两部分,编译安装SVO后对官方数据集的测试以及实验室摄像头的测试。

一.SVO安装及测试

在官方github首页上有比较详细的安装说明,不过部分步骤略有问题,此处给出成功安装的步骤。操作系统为ubuntu16.04并且安装ROS系统。

共创建两个工作空间,一个存放各种库,包括fastg2o以及Sophus,另一个存放SVO代码。

1.安装Sophus库

按照步骤即可

cd workspace

git clone https://github.com/strasdat/Sophus.git

cd Sophus

git checkout a621ff

mkdir build

cd build

cmake ..

make

2.安装角点检测库

同样按照步骤即可

cd workspace

git clone https://github.com/uzh-rpg/fast.git

cd fast

mkdir build

cd build

cmake ..

make

3.安装g2o库(选择性)

这一步同样按照官网步骤即可,另外需要安装的依赖库有cmake, libeigen3-dev, libsuitesparse-dev, libqt4-dev, qt4-qmake, libqglviewer-qt4-dev,使用apt-get安装即可。

cd workspace

git clone https://github.com/RainerKuemmerle/g2o.git

cd g2o

mkdir build

cd build

cmake ..

make

sudo make install

需要注意的是,按照官方说明安装的eigen库并不能在当前SVO版本中工作,解决办法是安装eigen3.2.10。(此问题在github上的issue栏中有说明)eigen下载链接

http://bitbucket.org/eigen/eigen/get/3.2.10.tar.bz2

下载后运行如下命令编译安装

tar -xf [name of the file]

cd [name of the file]

mkdir build

cd build

cmake ..

sudo make install

4.按照官网安装vikit和ROS依赖项

cd catkin_ws/src

git clone https://github.com/uzh-rpg/rpg_vikit.git

sudo apt-get install ros-hydro-cmake-modules

命令中将hydro替换为自己对应的发行版即可,此处为kinect

5.编译代码

cd catkin_ws/src

git clone https://github.com/uzh-rpg/rpg_svo.git

如果安装了g2o则需要将svo/CMakeLists.txt文件中的HAVE_G2O变量置为TRUE,添加环境变量G2O_ROOT

gedit  ~/.bashrc

添加export G2O_ROOT = $HOME/SLAM/SVO/g2o

使用catkin_make编译SVO代码。

6.测试数据集

下载地址 

rpg.ifi.uzh.ch/datasets/airground_rig_s3_2013-03-18_21-38-48.bag

一共需要开启四个命令行窗口,首先启动ROS,运行roscore

然后是roslaunch svo_ros test_rig3.launch,运行此命令前需要运行source devel/setup.bash

再然后是运行

rosrun rviz rviz -d <PATH TO rpg_svo>/svo_ros/rviz_config.rviz

开启GUI查看结果。

最后运行

rosbag play airground_rig_s3_2013-03-18_21-38-48.bag

加载数据集,可以在GUI中看到数据集运行的效果。

二.摄像头测试

测试摄像头前需要标定,使用atan模型的效果较好,可以在PTAM中进行摄像头的标定,不过由于PTAM没有安装成功,因此这里使用SVO中原有的参数,只要在参数文件中把图像宽度和高度做修改即可。

1.图像采集

使用ROS提供的usb camera节点程序采集摄像头图像,下载编译后运行

rosrun usb_cam usb_cam_node开始采集图像并发布,运行如下命令查看原始彩色图像

rosrun image_view image_view image:=/usb_cam/image_raw

2.图像转换

SVO使用的图像为单通道灰度图,摄像头输出为RGB彩色图像,因此还需要一个节点程序订阅彩色图像后转换成灰度图并发布。创建ROS节点程序可以参考:

http://www.cnblogs.com/blue35sky/p/6078771.html

注意创建时添加对应的依赖项,如opencv相关的依赖项cv_bridgeimage_transport。转换后的图像为/mono_image,运行图像转换程序

rosrun cam_test cam_test_node并在第一步查看图像命令中修改需要查看的图像主题名即可看到灰度图像。

转换代码:

#include <ros/ros.h>
#include <opencv2/opencv.hpp>
#include <opencv/cv.h>
#include <opencv/highgui.h>
#include <image_transport/image_transport.h>
#include <cv_bridge/cv_bridge.h>
#include <sensor_msgs/image_encodings.h>
#include "ros/ros.h"
#include "std_msgs/String.h"ros::Publisher image_pub ;void chatterCallback(const sensor_msgs::ImageConstPtr& msg)
{cv_bridge::CvImagePtr  cv_ptr;cv_ptr = cv_bridge::toCvCopy(msg,sensor_msgs::image_encodings::BGR8);cv::Mat image_gray;cv::cvtColor(cv_ptr->image, image_gray,CV_BGR2GRAY);//灰度化cv_bridge::CvImage  cvi;sensor_msgs::Image  ros_img;ros::Time time=ros::Time::now();cvi.header.stamp = time;cvi.header.frame_id = "image";cvi.encoding = "mono8";cvi.image = image_gray;cvi.toImageMsg(ros_img);image_pub.publish(cvi.toImageMsg());
}int main(int argc, char **argv)
{ros::init(argc, argv, "img_tran");ros::NodeHandle n;ros::Subscriber sub = n.subscribe("/usb_cam/image_raw", 1000, chatterCallback);image_pub = n.advertise<sensor_msgs::Image>("/mono_image", 1000);ros::spin();return 0;
}

3.启动SVO测试

可以直接在原有的test_rig3.launch文件中稍作修改后启动SVO,将摄像头主题的值修改为/mono_image,即上一步发布的灰度图。下面的摄像头校准文件,如果做了校准,可以写成param文件夹中文件的格式,之后在启动文件中将摄像头校准文件参数改成自己的文件就好。一般情况下只有这两处需要修改,之后就可以启动SVO,启动GUI查看位姿估计结果。这里由于摄像头没有校准,因此成功率不高,经常提示特征点太少,不过成功的情况下位姿估计效果还是不错的。

这篇关于半直接法视觉里程计(SVO)实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1095984

相关文章

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

golang内存对齐的项目实践

《golang内存对齐的项目实践》本文主要介绍了golang内存对齐的项目实践,内存对齐不仅有助于提高内存访问效率,还确保了与硬件接口的兼容性,是Go语言编程中不可忽视的重要优化手段,下面就来介绍一下... 目录一、结构体中的字段顺序与内存对齐二、内存对齐的原理与规则三、调整结构体字段顺序优化内存对齐四、内

C++实现封装的顺序表的操作与实践

《C++实现封装的顺序表的操作与实践》在程序设计中,顺序表是一种常见的线性数据结构,通常用于存储具有固定顺序的元素,与链表不同,顺序表中的元素是连续存储的,因此访问速度较快,但插入和删除操作的效率可能... 目录一、顺序表的基本概念二、顺序表类的设计1. 顺序表类的成员变量2. 构造函数和析构函数三、顺序表

python实现简易SSL的项目实践

《python实现简易SSL的项目实践》本文主要介绍了python实现简易SSL的项目实践,包括CA.py、server.py和client.py三个模块,文中通过示例代码介绍的非常详细,对大家的学习... 目录运行环境运行前准备程序实现与流程说明运行截图代码CA.pyclient.pyserver.py参

使用C++实现单链表的操作与实践

《使用C++实现单链表的操作与实践》在程序设计中,链表是一种常见的数据结构,特别是在动态数据管理、频繁插入和删除元素的场景中,链表相比于数组,具有更高的灵活性和高效性,尤其是在需要频繁修改数据结构的应... 目录一、单链表的基本概念二、单链表类的设计1. 节点的定义2. 链表的类定义三、单链表的操作实现四、

Spring Boot统一异常拦截实践指南(最新推荐)

《SpringBoot统一异常拦截实践指南(最新推荐)》本文介绍了SpringBoot中统一异常处理的重要性及实现方案,包括使用`@ControllerAdvice`和`@ExceptionHand... 目录Spring Boot统一异常拦截实践指南一、为什么需要统一异常处理二、核心实现方案1. 基础组件

SpringBoot项目中Maven剔除无用Jar引用的最佳实践

《SpringBoot项目中Maven剔除无用Jar引用的最佳实践》在SpringBoot项目开发中,Maven是最常用的构建工具之一,通过Maven,我们可以轻松地管理项目所需的依赖,而,... 目录1、引言2、Maven 依赖管理的基础概念2.1 什么是 Maven 依赖2.2 Maven 的依赖传递机

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

在C#中获取端口号与系统信息的高效实践

《在C#中获取端口号与系统信息的高效实践》在现代软件开发中,尤其是系统管理、运维、监控和性能优化等场景中,了解计算机硬件和网络的状态至关重要,C#作为一种广泛应用的编程语言,提供了丰富的API来帮助开... 目录引言1. 获取端口号信息1.1 获取活动的 TCP 和 UDP 连接说明:应用场景:2. 获取硬

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J