MySQL系列:innodb源码分析之redo log恢复

2024-08-22 08:58

本文主要是介绍MySQL系列:innodb源码分析之redo log恢复,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在上一篇《innodb源码分析之重做日志结构》中我们知道redo log的基本结构和日志写入步骤,那么redo log是怎么进行数据恢复的呢?在什么时候进行redo log的日志推演呢?redo log的推演只有在数据库异常或者关闭后,数据库重新启动时会进行日志推演,将数据库状态恢复到关闭前的状态。那么这个过程是怎么进行的呢?以下我们逐步来解析。

1.recv_sys_t结构

 innodb在MySQL启动的时候,会对重做日志文件进行日志重做,重做日志是通过一个recv_sys_t的结构来进行数据恢
复和控制的。它的结构如下:
struct recv_sys_struct
{mutex_t	 mutex;                                 /*保护锁*/ibool	 apply_log_recs;                        /*正在应用log record到page中*/ibool	 apply_batch_on;                     /*批量应用log record标志*/dulint	 lsn;ulint	 last_log_buf_size;byte*	 last_block;                             /*恢复时最后的块内存缓冲区*/byte*	 last_block_buf_start;             /*最后块内存缓冲区的起始位置,因为last_block是512地址对齐的,需要这个变量记录free的地址位置*/byte*	 buf;                                        /*从日志块中读取的重做日志信息数据*/ulint	 len;	 /*buf有效的日志数据长度*/dulint	 parse_start_lsn;                       /*开始parse的lsn*/dulint	 scanned_lsn;                           /*已经扫描过的lsn序号*/ulint	 scanned_checkpoint_no;          /*恢复日志的checkpoint 序号*/ulint	 recovered_offset;                       /*恢复位置的偏移量*/dulint	 recovered_lsn;                         /*恢复的lsn位置*/dulint	 limit_lsn;                                  /*日志恢复最大的lsn,暂时在日志重做的过程没有使用*/ibool	 found_corrupt_log;                   /*是否开启日志恢复诊断*/log_group_t*	archive_group;mem_heap_t*	 heap;                             /*recv sys的内存分配堆,用来管理恢复过程的内存占用*/hash_table_t*	addr_hash;                     /*recv_addr的hash表,以space id和page no为KEY*/ulint	 n_addrs;                                        /*addr_hash中包含recv_addr的个数*/
};
在这个结构中,比较复杂的是addr_hash这个哈希表,这个哈希表是用sapce_id和page_no作为hash key,里面存储有恢复时对应的记录内容。恢复日志在从日志文件中读出后,进行解析成若干个recv_t并存储在哈希表当中。在一个读取解析周期过后,日志恢复会对hash表中的recv_t中的数据写入到ibuf和page中。这里为什么要使用hash表呢?个人觉得是为了同一个page的数据批量进行恢复的缘故,这样可以page减少随机插入和修改。 以下是和这个过程相关的几个数据结构:
/*对应页的数据恢复操作集合*/ 
struct recv_addr_struct
{ulint	 state;          /*状态,RECV_NOT_PROCESSED、RECV_BEING_PROCESSED、RECV_PROCESSED*/ulint	 space;         /*space的ID*/ulint	 page_no;    /*页序号*/UT_LIST_BASE_NODE_T(recv_t) rec_list;hash_node_t	 addr_hash;
};
/*当前的记录操作*/
struct recv_struct
{byte	 type;             /*log类型*/ulint	 len;               /*当前记录数据长度*/recv_data_t*	data;	 /*当前的记录数据list*/dulint	 start_lsn;     /*mtr起始lsn*/dulint	 end_lsn;      /*mtr结尾lns*/UT_LIST_NODE_T(recv_t)	rec_list;
};
/*具体的数据体*/
struct recv_data_struct  
{recv_data_t*	next;	/*下一个recv_data_t,next的地址后面接了一大块内存,用于存储rec body*/
};
他们的内存关系结构图如下:

2.重做日志推演过程的LSN关系

除了这个恢复的哈希表以外,recv_sys_t中的各种LSN也是和日志恢复有非常紧密的关系。以下是各种lsn的解释:
    parse_start_lsn    本次日志重做恢复起始的lsn,如果是从checkpoint处开始恢复,等于checkpoint_lsn。
    scanned_lsn        在恢复过程,将恢复日志从log_sys->buf解析块后存入recv_sys->buf的日志lsn.
    recovered_lsn      已经将数据恢复到page中或者已经将日志操作存储addr_hash当中的日志lsn;
    在日志开始恢复时:
     parse_start_lsn = scanned_lsn = recovered_lsn = 检查点的lsn。
   在日志完成恢复时:
       parse_start_lsn =  检查点的lsn
       scanned_lsn = recovered_lsn = log_sys->lsn。
在日志推演过程中lsn大小关系如下:

3.日志恢复的主要接口和流程

恢复日志主要的接口函数:
recv_recovery_from_checkpoint_start    从重做日志组内的最近的checkpoint开始恢复数据
    recv_recovery_from_checkpoint_finish  结束从重做日志组内的checkpoint的数据恢复操作
    recv_recovery_from_archive_start           从归档日志文件中进行数据恢复
    recv_recovery_from_archive_finish         结束从归档日志中的数据恢复操作
    recv_reset_logs                              
             截取重做日志最后一段作为新的重做日志的起始位置,可能会丢失数据

重做日志恢复数据的流程(checkpoint方式)
1.当MySQL启动的时候,先会从数据库文件中读取出上次保存最大的LSN。
    2.然后调用recv_recovery_from_checkpoint_start,并将最大的LSN作为参数传入函数当中。
    3.函数会先最近建立checkpoint的日志组,并读取出对应的checkpoint信息
    4.通过checkpoint lsn和传入的最大LSN进行比较,如果相等,不进行日志恢复数据,如果不相等,进行日志恢复。
    5.在启动恢复之前,先会同步各个日志组的archive归档状态
    6.在开始恢复时,先会从日志文件中读取2M的日志数据到log_sys->buf,然后对这2M的数据进行scan,校验其合法性,而后将去掉block header的日志放入recv_sys->buf当中,这个过程称为scan,会改变scanned lsn.
    7.在对2M的日志数据scan后,innodb会对日志进行mtr操作解析,并执行相关的mtr函数。如果mtr合法,会将对应的记录数据按space page_no作为KEY存入recv_sys->addr_hash当中。
    8.当对scan的日志数据进行mtr解析后,innodb对会调用recv_apply_hashed_log_recs对整个recv_sys->addr_hash进行扫描,并按照日志相对应的操作进行对应page的数据恢复。这个过程会改变recovered_lsn。
    9.如果完成第8步后,会再次从日志组文件中读取2M数据,跳到步骤6继续相对应的处理,直到日志文件没有需要恢复的日志数据。
    10.innodb在恢复完成日志文件中的数据后,会调用recv_recovery_from_checkpoint_finish结束日志恢复操作,主要是释放一些开辟的内存。并进行事务和binlog的处理。
上面过程的示意图如下:




这篇关于MySQL系列:innodb源码分析之redo log恢复的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1095825

相关文章

MySQL中时区参数time_zone解读

《MySQL中时区参数time_zone解读》MySQL时区参数time_zone用于控制系统函数和字段的DEFAULTCURRENT_TIMESTAMP属性,修改时区可能会影响timestamp类型... 目录前言1.时区参数影响2.如何设置3.字段类型选择总结前言mysql 时区参数 time_zon

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

使用SQL语言查询多个Excel表格的操作方法

《使用SQL语言查询多个Excel表格的操作方法》本文介绍了如何使用SQL语言查询多个Excel表格,通过将所有Excel表格放入一个.xlsx文件中,并使用pandas和pandasql库进行读取和... 目录如何用SQL语言查询多个Excel表格如何使用sql查询excel内容1. 简介2. 实现思路3

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Mysql DATETIME 毫秒坑的解决

《MysqlDATETIME毫秒坑的解决》本文主要介绍了MysqlDATETIME毫秒坑的解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 今天写代码突发一个诡异的 bug,代码逻辑大概如下。1. 新增退款单记录boolean save = s

mysql-8.0.30压缩包版安装和配置MySQL环境过程

《mysql-8.0.30压缩包版安装和配置MySQL环境过程》该文章介绍了如何在Windows系统中下载、安装和配置MySQL数据库,包括下载地址、解压文件、创建和配置my.ini文件、设置环境变量... 目录压缩包安装配置下载配置环境变量下载和初始化总结压缩包安装配置下载下载地址:https://d

MySQL中的锁和MVCC机制解读

《MySQL中的锁和MVCC机制解读》MySQL事务、锁和MVCC机制是确保数据库操作原子性、一致性和隔离性的关键,事务必须遵循ACID原则,锁的类型包括表级锁、行级锁和意向锁,MVCC通过非锁定读和... 目录mysql的锁和MVCC机制事务的概念与ACID特性锁的类型及其工作机制锁的粒度与性能影响多版本

MYSQL行列转置方式

《MYSQL行列转置方式》本文介绍了如何使用MySQL和Navicat进行列转行操作,首先,创建了一个名为`grade`的表,并插入多条数据,然后,通过修改查询SQL语句,使用`CASE`和`IF`函... 目录mysql行列转置开始列转行之前的准备下面开始步入正题总结MYSQL行列转置环境准备:mysq

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX