基于YOLOv8的船舶目标检测与分割(ONNX模型)

2024-08-22 08:44

本文主要是介绍基于YOLOv8的船舶目标检测与分割(ONNX模型),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

项目背景

  • 需求分析:在海洋监控、港口管理、海事安全等领域,自动化的船只检测与分割技术对于提高效率和安全性至关重要。
  • 技术选型:YOLOv8是YOLO系列的一个较新版本,以其速度快、准确率高而著称。使用ONNX(Open Neural Network Exchange)格式可以跨平台部署模型,并且通常能够获得更好的性能。

技术栈

  • Python:主要编程语言。
  • PyTorch:用于训练和加载YOLOv8模型。
  • ONNX:用于模型转换和部署。
  • OpenCV:用于图像处理和显示结果。
  • Pillow:用于读取和保存图像文件。

项目结构

  1. 数据准备

    • 收集带有标注的船只图像数据集。
    • 将数据集划分为训练集和测试集。
  2. 模型训练

    • 使用YOLOv8框架训练模型。
    • 调整超参数以优化检测和分割性能。
  3. 模型转换

    • 将训练好的PyTorch模型导出为ONNX格式。
    • 验证ONNX模型的正确性。
  4. 推理部署

    • 编写推理代码,支持从图像或视频流中检测并分割船只。
    • 使用ONNX Runtime进行高效推理。
  5. 结果展示

    • 可视化检测结果,包括边界框和分割掩码。
    • 计算并报告性能指标如准确率、召回率等。

示例代码

一个简化的示例代码片段,用于演示如何加载一个ONNX模型并在单张图片上进行船只检测和分割:

1import cv2
2import numpy as np
3import onnxruntime as ort
4
5# 加载ONNX模型
6ort_session = ort.InferenceSession("yolov8.onnx")
7
8# 加载图像
9img = cv2.imread('input.jpg')
10img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
11img = img.astype(np.float32) / 255.0
12img = np.expand_dims(img, axis=0)
13
14# 进行推理
15outputs = ort_session.run(None, {'images': img})
16
17# 解析输出
18boxes, scores, labels, masks = outputs
19
20# 可视化结果
21for box, score, label, mask in zip(boxes[0], scores[0], labels[0], masks[0]):
22    if score > 0.5:
23        x1, y1, x2, y2 = box
24        # 绘制边界框
25        cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2)
26        # 绘制分割掩码
27        mask = (mask > 0.5).astype(np.uint8) * 255
28        img_masked = cv2.bitwise_and(img, img, mask=mask)
29        img = cv2.addWeighted(img, 1, img_masked, 0.5, 0)
30
31cv2.imshow('Detection and Segmentation', cv2.cvtColor(img, cv2.COLOR_RGB2BGR))
32cv2.waitKey(0)
33cv2.destroyAllWindows()

首先,确保安装了必要的库:

1pip install onnxruntime opencv-python Pillow numpy

接下来是Python代码示例:

1import cv2
2import numpy as np
3from PIL import Image
4import onnxruntime as ort
5
6def letterbox_image(image, new_size):
7    """
8    Resize the image with unchanged aspect ratio using padding.
9    """
10    old_size = image.shape[:2]  # old_size is in (height, width) format
11    ratio = min(new_size[0] / old_size[0], new_size[1] / old_size[1])
12    new_size = tuple([int(x * ratio) for x in old_size])
13    image = cv2.resize(image, (new_size[1], new_size[0]))
14    
15    delta_w = new_size[1] - new_size[1]
16    delta_h = new_size[0] - new_size[0]
17    top, bottom = delta_h // 2, delta_h - (delta_h // 2)
18    left, right = delta_w // 2, delta_w - (delta_w // 2)
19    
20    color = [0, 0, 0]
21    new_img = cv2.copyMakeBorder(image, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)
22    return new_img, ratio, (top, left)
23
24def preprocess_image(image, input_size=(640, 640)):
25    """
26    Preprocess the image to match the input size of the model.
27    """
28    img, _, _ = letterbox_image(image, input_size)
29    img = img[:, :, ::-1].transpose((2, 0, 1))  # BGR to RGB, HWC to CHW
30    img = np.ascontiguousarray(img, dtype=np.float32) / 255.0
31    return img
32
33def postprocess_output(output, confidence_threshold=0.5, iou_threshold=0.5):
34    """
35    Postprocess the output from the model.
36    """
37    boxes = output[0][0]
38    scores = output[0][1]
39    labels = output[0][2]
40    masks = output[0][3]
41
42    # Apply non-max suppression
43    indices = cv2.dnn.NMSBoxes(boxes.tolist(), scores.tolist(), confidence_threshold, iou_threshold)
44
45    filtered_boxes = []
46    filtered_scores = []
47    filtered_labels = []
48    filtered_masks = []
49
50    for i in indices:
51        idx = i[0]
52        filtered_boxes.append(boxes[idx])
53        filtered_scores.append(scores[idx])
54        filtered_labels.append(labels[idx])
55        filtered_masks.append(masks[idx])
56
57    return filtered_boxes, filtered_scores, filtered_labels, filtered_masks
58
59def visualize(image, boxes, scores, labels, masks, orig_image_shape, ratio, padding):
60    """
61    Visualize the detection results.
62    """
63    top, left = padding
64    for box, score, label, mask in zip(boxes, scores, labels, masks):
65        box = np.array(box).astype(int)
66        box /= ratio
67        box[[0, 2]] -= left
68        box[[1, 3]] -= top
69        box = box.clip(min=0)
70        
71        # Draw bounding box
72        cv2.rectangle(image, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 2)
73        
74        # Draw segmentation mask
75        mask = (mask > 0.5).astype(np.uint8) * 255
76        mask = cv2.resize(mask, (orig_image_shape[1], orig_image_shape[0]))
77        image_masked = cv2.bitwise_and(image, image, mask=mask)
78        image = cv2.addWeighted(image, 1, image_masked, 0.5, 0)
79
80    return image
81
82# Load the ONNX model
83ort_session = ort.InferenceSession("yolov8.onnx")
84
85# Load an example image
86image_path = 'input.jpg'
87image = cv2.imread(image_path)
88orig_image_shape = image.shape[:2]
89
90# Preprocess the image
91input_image = preprocess_image(image)
92input_image = np.expand_dims(input_image, axis=0)
93
94# Perform inference
95outputs = ort_session.run(None, {'images': input_image})
96
97# Postprocess the output
98filtered_boxes, filtered_scores, filtered_labels, filtered_masks = postprocess_output(outputs)
99
100# Visualize the results
101visualized_image = visualize(image, filtered_boxes, filtered_scores, filtered_labels, filtered_masks, orig_image_shape, 1.0, (0, 0))
102
103# Display the result
104cv2.imshow('Detection and Segmentation', visualized_image)
105cv2.waitKey(0)
106cv2.destroyAllWindows()

代码说明

  1. letterbox_image: 保持原始图像的长宽比不变,通过填充的方式调整图像大小。
  2. preprocess_image: 图像预处理函数,将图像调整到模型所需的尺寸,并将其转换为合适的格式。
  3. postprocess_output: 后处理函数,对模型输出进行非极大值抑制 (NMS),过滤掉低置信度和重叠的预测。
  4. visualize: 结果可视化函数,用于绘制边界框和分割掩码。

注意事项

  • 在运行这段代码之前,请确保已经训练了一个YOLOv8模型,并将其导出为ONNX格式。你可以从YOLOv8的官方仓库获取相应的代码或者使用预训练的模型。
  • 本示例假设模型输出包含四个维度:边界框坐标、置信度分数、类别标签以及分割掩码。
  • 对于实际应用,你可能还需要考虑更多的因素,例如模型的输入输出布局、后处理的具体细节等。

 

代码仅为示例,实际应用中可能需要根据具体需求调整细节。此外,确保安装了所有必要的库,并正确配置了环境。 

这篇关于基于YOLOv8的船舶目标检测与分割(ONNX模型)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1095786

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX

上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU