本文主要是介绍业务中台基础设施建设--数据模型体系总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
一、数据仓库架构
二、数据主题域设计
三、数据仓库
关于数据仓库概念的标准定义业内认可度比较高的,是由数据仓库之父比尔·恩门(Bill Inmon)在1991年出版的“Building the Data Warehouse”(《建立数据仓库》)一书中所提出:
中文定义:数据仓库是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合,用于支持管理决策。
英文定义:A data warehouse is a subject-oriented, integrated, nonvolatile, and time-variant collection of data in support of management’s decisions.
四、主题
主题是与传统数据库的面向应用相对应的,是一个抽象概念,是在较高层次上将企业信息系统中的数据综合、归类并进行分析利用的抽象。每一个主题对应一个宏观的分析领域。在逻辑意义上,它是对应企业中某一宏观分析领域所涉及的分析对象。面向主题的数据组织方式, 就是在较高层次上对分析对象数据的一个完整并且一致的描 述,能刻画各个分析对象所涉及的企业各项数据,以及数据之间的联系。所谓较高层次是相 对面向应用的数据组织方式而言的, 是指按照主题进行数据组织的方式具有更高的数据抽象 级别。 与传统数据库面向应用进行数据组织的特点相对应, 数据仓库中的数据是面向主题进行组织的。主题是根据分析的要求来确定的。这与按照数据处理或应用的要求来组织数据是不同的。
五、主题域
主题域通常是联系较为紧密的数据主题的集合。可以根据业务的关注点,将这些数据主题划分到不同的主题域。主题域的确定必须由最终用户和数据仓库的设计人员共同完成。
六、主题域、主题、实体间关系
主题设计是对主题域进一步分解,细化的过程。主题域下面可以有多个主题,主题还可以划分成更多的子主题,而实体则是不可划分的最小单位。主题域、主题、实体的关系如下图所示:
七、关于主题域的争议
曾经在看到过关于主题域的另外一个定义方式:“主题域是对某个主题进行分析后确定的主题的边界”。相关内容如下文所示:
主题域是对某个主题进行分析后确定的主题的边界。分析主题域,确定要装载到数据仓库的主题是 信息打包技术的第一步。而在进行数据仓库设计时,一般是一次先建立一个主题或企业全部主题中的一部分,因此在大多数数据仓库的设计过程中都有一个主题域的 选择过程。主题域的确定必须由最终用户和数据仓库的设计人员共同完成。
比如,对于Adventure Works Cycle这种类型的公司管理层需要分析的主题一般包括供应商主题、商品主题、客户主题和仓库主题。其中商品主题的内容包括记录超市商品的采购情况、商品 的销售情况和商品的存储情况;客户主题包括的内容可能有客户购买商品的情况;仓库主题包括仓库中商品的存储情况和仓库的管理情况等,如图下图所示。
根据业务情况确定的分析主题
经过对以上内容深入分析,发现此定义与:”主题域通常是联系较为紧密的数据主题的集合“并不矛盾,只是所站的视角不同,“数据主题集合”的观点从数据着眼,前提是已经经过分析、梳理列出所有可能的数据主题,此处数据主题是细粒度的,是从微观到宏观;“边界论”的观点中,某个主题是分析的主题,是宏观概念,而非数据主题。
这篇关于业务中台基础设施建设--数据模型体系总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!