「数组」希尔排序 / 区间增量优化(C++)

2024-08-22 00:04

本文主要是介绍「数组」希尔排序 / 区间增量优化(C++),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

概述

思路

核心概念:增量d

算法过程

流程

Code

优化方案

区间增量优化

Code(pro)

复杂度


概述

我们在「数组」冒泡排序|选择排序|插入排序 / 及优化方案(C++)中讲解了插入排序。

它有这么两个特点:

①待排序元素较少时效率高。

②待排序元素较有序时效率高。

正如同快速排序时冒泡排序的究极promax进化版,希尔排序则是充分利用了这两个特点的插入排序promax进化版。


思路

战略是这样的:多次进行小数目的插入排序使得数组变得相对有序。

我们要采取一点策略:

通过多轮小型插入排序使得数组逐渐有序,然后就可以将小型插入排序变成中型插入排序。通过多轮中型插入排序使得数组几乎有序,然后就可以将小型插入排序变成整体插入排序。

通过一轮整体插入排序使得数组完全有序。

这个“小型的插入排序”的目的是使得数组逐渐有序,这意味这我们要在整个数组中挑选几个数出来,对他们进行插入排序。

这种挑选是很有讲究的:

我们挑选的数必须能均等地位于整个数组的不同位置中,这样才能使整个数组愈发有序。

我们挑选的数必须能覆盖整个数组,这样才能使整个数组整体愈发有序。

于是就有了增量的概念。


核心概念:增量d

增量d的本质就是对整个数组进行间隔分组:

我们将arr[i],arr[i+d],arr[i+2d]...分为一组,在组内进行插入排序。

完成一组后再完成下一组,直到所有组都进行了组内插入排序。之后减小增量d重新分组,重复上述过程,直到d=1,进行完整的插入排序。

通常我们初始化d=len/2,然后依次d/=2。(向下取整)

例如:

 len=11;arr[i] 7 1 8 9 5 6 4 2 3 10 0↓d=len/2;
┌--------------------------------------------┐d=5;i  0 1 2 3 4 5 6 7 8 9 10arr[i] 7 1 8 9 5 6 4 2 3 10 0↓d↓group0 7----d----6          0group1   1----d----4group2     8----d----2group3       9----d----3group4         5----d----10↓insertion_sort()↓group0 0         6          7group1   1         4group2     2         8group3       3         9group4         5         10↓after sorted↓arr[i] 0 1 2 3 5 6 4 8 9 10 7
└--------------------------------------------┘↓d/=2;
┌--------------------------------------------┐d=2;i  0 1 2 3 4 5 6 7 8 9 10arr[i] 0 1 2 3 5 6 4 8 9 10 7↓d↓group0 0-d-2   5   4   9    7group1   1-d-3   6   8   10↓insertion_sort()↓group0 0   2   4   5   7    9group1   1   3   6   8   10↓after sorted↓arr[i] 0 1 2 3 4 6 5 8 7 10 9
└--------------------------------------------┘↓d/=2;
┌--------------------------------------------┐d=1;i  0 1 2 3 4 5 6 7 8 9 10arr[i] 0 1 2 3 4 6 5 8 7 10 9↓insertion_sort()↓arr[i] 0 1 2 3 4 5 6 7 8 9 10
└--------------------------------------------┘

我们注意到,d的值和分组数量是相等的

因为arr[i]与arr[i+d]为同组,而arr[i+d]与arr[i]间共有d-1组各不相同,再加上arr[i]这一组,共d组。

这一点将会在分组代码实现时利用到。 

*注意*:分组图只是我们的具象化表达,希尔排序是原地算法,不会使用额外的空间储存每一组。 


算法过程

流程

共有四层循环:

①最外层循环(增量减半缩小层)while (d/=2)控制增量减半

②次外层循环(按照增量分组层)for (int group = 0; group < d; group++)进行分组

③次内层循环for (int i = group+d; i < len; i += d)进行组内插入排序(根据插入排序的原理,首个元素可以跳过)

④最内层循环for ( j= i-d; j >= 0; j -= d)将组内的元素插入到组内的有序区中。

你会发现内部的两层循环就是普通插入排序的是实现,只不过普通插入排序的增量d始终为1。

Code

void shell_sort(int arr[], int len) {int d = len;while (d /= 2) {for (int group = 0; group < d; group++) {for (int i = group+d; i < len; i += d) {int temp = arr[i], j = i - d;for (; j >= 0; j -= d) {if (temp < arr[j])arr[j + d] = arr[j];else break;}arr[j + d] = temp;}}}
}

优化方案

区间增量优化

Knuth大神提出了另一种增量策略:d=d/3+1。(+1是为了使得d==2时下次取到d==1)

你会意识到上一种分组的增量减半缩小层是log₂N级别的,而这种则是log₃N级别的

但是这种优化不一定是最理想的,其实与上一种分组各有胜负:

因为这只是优化了增量减半缩小层,而每层内部进行了更多的比较。

Code(pro)

void SLsort(int arr[], int len) {int d = len;while (d = d/3+1) {for (int group = 0; group < d; group++) {for (int i = group + d; i < len; i += d) {int temp = arr[i], j = i - d;for (; j >= 0; j -= d) {if (temp < arr[j])arr[j + d] = arr[j];else break;}arr[j + d] = temp;}}if (d == 1)break;}
}

*注意*: 需要加入d==1的判断语句来结束最外层循环。


复杂度

时间复杂度:O(n¹·³)(或:O(nlog²n)

空间复杂度:O(1)

事实上,希尔排序的时间复杂度不是nlogn,它的证明极其困难,略去不表。

百万数量级抗压测试

int main()
{   int nums = 5000000;int* arr1 = new int[nums];int* arr2 = new int[nums];for (int i = 0; i < nums; i++) {int x = mt()%1000;arr1[i] =arr2[i]= x;}DWORD tick1 = GetTickCount64();shell_sort(arr1, nums);//show(arr, nums);DWORD tick2 = GetTickCount64();cout <<"Shell's strategy(ms):" << tick2 - tick1 << endl;DWORD tick3 = GetTickCount64();SLsort(arr2, nums);//show(arr, nums);DWORD tick4 = GetTickCount64();cout <<"Knuth's strategy(ms):" << tick4 - tick3 << endl;delete[] arr1;delete[] arr2;return 0;
}

这篇关于「数组」希尔排序 / 区间增量优化(C++)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1094666

相关文章

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

Spring排序机制之接口与注解的使用方法

《Spring排序机制之接口与注解的使用方法》本文介绍了Spring中多种排序机制,包括Ordered接口、PriorityOrdered接口、@Order注解和@Priority注解,提供了详细示例... 目录一、Spring 排序的需求场景二、Spring 中的排序机制1、Ordered 接口2、Pri

Deepseek使用指南与提问优化策略方式

《Deepseek使用指南与提问优化策略方式》本文介绍了DeepSeek语义搜索引擎的核心功能、集成方法及优化提问策略,通过自然语言处理和机器学习提供精准搜索结果,适用于智能客服、知识库检索等领域... 目录序言1. DeepSeek 概述2. DeepSeek 的集成与使用2.1 DeepSeek API

c++中std::placeholders的使用方法

《c++中std::placeholders的使用方法》std::placeholders是C++标准库中的一个工具,用于在函数对象绑定时创建占位符,本文就来详细的介绍一下,具有一定的参考价值,感兴... 目录1. 基本概念2. 使用场景3. 示例示例 1:部分参数绑定示例 2:参数重排序4. 注意事项5.

使用C++将处理后的信号保存为PNG和TIFF格式

《使用C++将处理后的信号保存为PNG和TIFF格式》在信号处理领域,我们常常需要将处理结果以图像的形式保存下来,方便后续分析和展示,C++提供了多种库来处理图像数据,本文将介绍如何使用stb_ima... 目录1. PNG格式保存使用stb_imagephp_write库1.1 安装和包含库1.2 代码解

Tomcat高效部署与性能优化方式

《Tomcat高效部署与性能优化方式》本文介绍了如何高效部署Tomcat并进行性能优化,以确保Web应用的稳定运行和高效响应,高效部署包括环境准备、安装Tomcat、配置Tomcat、部署应用和启动T... 目录Tomcat高效部署与性能优化一、引言二、Tomcat高效部署三、Tomcat性能优化总结Tom

C++实现封装的顺序表的操作与实践

《C++实现封装的顺序表的操作与实践》在程序设计中,顺序表是一种常见的线性数据结构,通常用于存储具有固定顺序的元素,与链表不同,顺序表中的元素是连续存储的,因此访问速度较快,但插入和删除操作的效率可能... 目录一、顺序表的基本概念二、顺序表类的设计1. 顺序表类的成员变量2. 构造函数和析构函数三、顺序表

使用C++实现单链表的操作与实践

《使用C++实现单链表的操作与实践》在程序设计中,链表是一种常见的数据结构,特别是在动态数据管理、频繁插入和删除元素的场景中,链表相比于数组,具有更高的灵活性和高效性,尤其是在需要频繁修改数据结构的应... 目录一、单链表的基本概念二、单链表类的设计1. 节点的定义2. 链表的类定义三、单链表的操作实现四、

解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)

《解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)》该文章介绍了使用Redis的阻塞队列和Stream流的消息队列来优化秒杀系统的方案,通过将秒杀流程拆分为两条流水线,使用Redi... 目录Redis秒杀优化方案(阻塞队列+Stream流的消息队列)什么是消息队列?消费者组的工作方式每