「数组」希尔排序 / 区间增量优化(C++)

2024-08-22 00:04

本文主要是介绍「数组」希尔排序 / 区间增量优化(C++),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

概述

思路

核心概念:增量d

算法过程

流程

Code

优化方案

区间增量优化

Code(pro)

复杂度


概述

我们在「数组」冒泡排序|选择排序|插入排序 / 及优化方案(C++)中讲解了插入排序。

它有这么两个特点:

①待排序元素较少时效率高。

②待排序元素较有序时效率高。

正如同快速排序时冒泡排序的究极promax进化版,希尔排序则是充分利用了这两个特点的插入排序promax进化版。


思路

战略是这样的:多次进行小数目的插入排序使得数组变得相对有序。

我们要采取一点策略:

通过多轮小型插入排序使得数组逐渐有序,然后就可以将小型插入排序变成中型插入排序。通过多轮中型插入排序使得数组几乎有序,然后就可以将小型插入排序变成整体插入排序。

通过一轮整体插入排序使得数组完全有序。

这个“小型的插入排序”的目的是使得数组逐渐有序,这意味这我们要在整个数组中挑选几个数出来,对他们进行插入排序。

这种挑选是很有讲究的:

我们挑选的数必须能均等地位于整个数组的不同位置中,这样才能使整个数组愈发有序。

我们挑选的数必须能覆盖整个数组,这样才能使整个数组整体愈发有序。

于是就有了增量的概念。


核心概念:增量d

增量d的本质就是对整个数组进行间隔分组:

我们将arr[i],arr[i+d],arr[i+2d]...分为一组,在组内进行插入排序。

完成一组后再完成下一组,直到所有组都进行了组内插入排序。之后减小增量d重新分组,重复上述过程,直到d=1,进行完整的插入排序。

通常我们初始化d=len/2,然后依次d/=2。(向下取整)

例如:

 len=11;arr[i] 7 1 8 9 5 6 4 2 3 10 0↓d=len/2;
┌--------------------------------------------┐d=5;i  0 1 2 3 4 5 6 7 8 9 10arr[i] 7 1 8 9 5 6 4 2 3 10 0↓d↓group0 7----d----6          0group1   1----d----4group2     8----d----2group3       9----d----3group4         5----d----10↓insertion_sort()↓group0 0         6          7group1   1         4group2     2         8group3       3         9group4         5         10↓after sorted↓arr[i] 0 1 2 3 5 6 4 8 9 10 7
└--------------------------------------------┘↓d/=2;
┌--------------------------------------------┐d=2;i  0 1 2 3 4 5 6 7 8 9 10arr[i] 0 1 2 3 5 6 4 8 9 10 7↓d↓group0 0-d-2   5   4   9    7group1   1-d-3   6   8   10↓insertion_sort()↓group0 0   2   4   5   7    9group1   1   3   6   8   10↓after sorted↓arr[i] 0 1 2 3 4 6 5 8 7 10 9
└--------------------------------------------┘↓d/=2;
┌--------------------------------------------┐d=1;i  0 1 2 3 4 5 6 7 8 9 10arr[i] 0 1 2 3 4 6 5 8 7 10 9↓insertion_sort()↓arr[i] 0 1 2 3 4 5 6 7 8 9 10
└--------------------------------------------┘

我们注意到,d的值和分组数量是相等的

因为arr[i]与arr[i+d]为同组,而arr[i+d]与arr[i]间共有d-1组各不相同,再加上arr[i]这一组,共d组。

这一点将会在分组代码实现时利用到。 

*注意*:分组图只是我们的具象化表达,希尔排序是原地算法,不会使用额外的空间储存每一组。 


算法过程

流程

共有四层循环:

①最外层循环(增量减半缩小层)while (d/=2)控制增量减半

②次外层循环(按照增量分组层)for (int group = 0; group < d; group++)进行分组

③次内层循环for (int i = group+d; i < len; i += d)进行组内插入排序(根据插入排序的原理,首个元素可以跳过)

④最内层循环for ( j= i-d; j >= 0; j -= d)将组内的元素插入到组内的有序区中。

你会发现内部的两层循环就是普通插入排序的是实现,只不过普通插入排序的增量d始终为1。

Code

void shell_sort(int arr[], int len) {int d = len;while (d /= 2) {for (int group = 0; group < d; group++) {for (int i = group+d; i < len; i += d) {int temp = arr[i], j = i - d;for (; j >= 0; j -= d) {if (temp < arr[j])arr[j + d] = arr[j];else break;}arr[j + d] = temp;}}}
}

优化方案

区间增量优化

Knuth大神提出了另一种增量策略:d=d/3+1。(+1是为了使得d==2时下次取到d==1)

你会意识到上一种分组的增量减半缩小层是log₂N级别的,而这种则是log₃N级别的

但是这种优化不一定是最理想的,其实与上一种分组各有胜负:

因为这只是优化了增量减半缩小层,而每层内部进行了更多的比较。

Code(pro)

void SLsort(int arr[], int len) {int d = len;while (d = d/3+1) {for (int group = 0; group < d; group++) {for (int i = group + d; i < len; i += d) {int temp = arr[i], j = i - d;for (; j >= 0; j -= d) {if (temp < arr[j])arr[j + d] = arr[j];else break;}arr[j + d] = temp;}}if (d == 1)break;}
}

*注意*: 需要加入d==1的判断语句来结束最外层循环。


复杂度

时间复杂度:O(n¹·³)(或:O(nlog²n)

空间复杂度:O(1)

事实上,希尔排序的时间复杂度不是nlogn,它的证明极其困难,略去不表。

百万数量级抗压测试

int main()
{   int nums = 5000000;int* arr1 = new int[nums];int* arr2 = new int[nums];for (int i = 0; i < nums; i++) {int x = mt()%1000;arr1[i] =arr2[i]= x;}DWORD tick1 = GetTickCount64();shell_sort(arr1, nums);//show(arr, nums);DWORD tick2 = GetTickCount64();cout <<"Shell's strategy(ms):" << tick2 - tick1 << endl;DWORD tick3 = GetTickCount64();SLsort(arr2, nums);//show(arr, nums);DWORD tick4 = GetTickCount64();cout <<"Knuth's strategy(ms):" << tick4 - tick3 << endl;delete[] arr1;delete[] arr2;return 0;
}

这篇关于「数组」希尔排序 / 区间增量优化(C++)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1094666

相关文章

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

C++ 中的 if-constexpr语法和作用

《C++中的if-constexpr语法和作用》if-constexpr语法是C++17引入的新语法特性,也被称为常量if表达式或静态if(staticif),:本文主要介绍C++中的if-c... 目录1 if-constexpr 语法1.1 基本语法1.2 扩展说明1.2.1 条件表达式1.2.2 fa

MySQL中慢SQL优化的不同方式介绍

《MySQL中慢SQL优化的不同方式介绍》慢SQL的优化,主要从两个方面考虑,SQL语句本身的优化,以及数据库设计的优化,下面小编就来给大家介绍一下有哪些方式可以优化慢SQL吧... 目录避免不必要的列分页优化索引优化JOIN 的优化排序优化UNION 优化慢 SQL 的优化,主要从两个方面考虑,SQL 语

MySQL中慢SQL优化方法的完整指南

《MySQL中慢SQL优化方法的完整指南》当数据库响应时间超过500ms时,系统将面临三大灾难链式反应,所以本文将为大家介绍一下MySQL中慢SQL优化的常用方法,有需要的小伙伴可以了解下... 目录一、慢SQL的致命影响二、精准定位问题SQL1. 启用慢查询日志2. 诊断黄金三件套三、六大核心优化方案方案

C++中::SHCreateDirectoryEx函数使用方法

《C++中::SHCreateDirectoryEx函数使用方法》::SHCreateDirectoryEx用于创建多级目录,类似于mkdir-p命令,本文主要介绍了C++中::SHCreateDir... 目录1. 函数原型与依赖项2. 基本使用示例示例 1:创建单层目录示例 2:创建多级目录3. 关键注

C++从序列容器中删除元素的四种方法

《C++从序列容器中删除元素的四种方法》删除元素的方法在序列容器和关联容器之间是非常不同的,在序列容器中,vector和string是最常用的,但这里也会介绍deque和list以供全面了解,尽管在一... 目录一、简介二、移除给定位置的元素三、移除与某个值相等的元素3.1、序列容器vector、deque

C++常见容器获取头元素的方法大全

《C++常见容器获取头元素的方法大全》在C++编程中,容器是存储和管理数据集合的重要工具,不同的容器提供了不同的接口来访问和操作其中的元素,获取容器的头元素(即第一个元素)是常见的操作之一,本文将详细... 目录一、std::vector二、std::list三、std::deque四、std::forwa