CV学习笔记3-图像特征提取

2024-08-21 23:52

本文主要是介绍CV学习笔记3-图像特征提取,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

图像特征提取是计算机视觉中的一个关键步骤,其目标是从图像中提取有意义的特征,以便进行进一步的分析或任务,如分类、检测、分割等。特征提取可以帮助减少数据的维度,同时保留重要的信息。以下是常见的图像特征提取方法和技术:

1. 传统特征提取方法

1.1 边缘检测

  • Canny 边缘检测:通过计算图像中像素的梯度,找出边缘。
  • Sobel 算子:计算图像在 x 和 y 方向的梯度,用于边缘检测。
  • Laplacian 算子:计算图像的二阶导数,用于检测图像中的边缘和角点。

1.2 角点检测

  • Harris 角点检测:检测图像中具有显著变化的角点,通常用于特征匹配。
  • Shi-Tomasi 角点检测:改进的角点检测方法,比 Harris 方法更稳定。

1.3 纹理特征

  • 灰度共生矩阵(GLCM):描述图像纹理的统计特征,例如对比度、均匀性等。
  • 局部二值模式(LBP):通过比较像素值与周围像素的关系来描述纹理特征。

1.4 颜色特征

  • 颜色直方图:计算图像中每种颜色的出现频率。
  • 颜色空间转换:将图像从 RGB 颜色空间转换为其他颜色空间(如 HSV、Lab)以提取颜色特征。

2. 深度学习特征提取

2.1 卷积神经网络(CNN)

  • 卷积层:通过卷积操作提取局部特征。
  • 池化层:减少特征图的尺寸,保留重要信息,减少计算量。
  • 全连接层:将提取的特征映射到最终的分类或回归任务中。

2.2 预训练模型

  • VGGNet:一种经典的深度卷积神经网络,以其深度和简单的结构闻名。
  • ResNet:引入了残差连接,解决了深度网络中的梯度消失问题。
  • InceptionNet:使用多尺度的卷积核来捕捉不同大小的特征。
  • MobileNet:设计轻量级的卷积神经网络,适合移动设备。

2.3 特征提取与转移学习

  • 特征提取:利用预训练的模型提取特征,用于新任务的输入。
  • 转移学习:将预训练模型的一部分(如卷积层)应用于新任务中,以便利用已有的知识和特征。

3. 特征提取的应用

3.1 图像分类

使用提取的特征进行图像分类,将图像分配到预定义的类别中。

3.2 物体检测

在图像中识别并定位特定的物体,通常涉及特征提取和区域提议。

3.3 图像分割

将图像分成多个有意义的区域或对象,常用的技术包括语义分割和实例分割。

3.4 图像检索

通过比较图像特征来检索与查询图像相似的图像。

4. 实现示例

传统特征提取示例(Python + OpenCV)

import cv2
import numpy as np# 读取图像
image = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE)# 边缘检测
edges = cv2.Canny(image, 100, 200)# 角点检测
corners = cv2.cornerHarris(image, 2, 3, 0.04)# 纹理特征(LBP)
from skimage.feature import local_binary_pattern
lbp = local_binary_pattern(image, P=8, R=1, method='uniform')

深度学习特征提取示例(Python + TensorFlow)

import tensorflow as tf
from tensorflow.keras.applications import VGG16
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.vgg16 import preprocess_input# 加载预训练模型
model = VGG16(weights='imagenet', include_top=False, input_shape=(224, 224, 3))# 读取和预处理图像
img = image.load_img('image.jpg', target_size=(224, 224))
img_array = image.img_to_array(img)
img_array = np.expand_dims(img_array, axis=0)
img_array = preprocess_input(img_array)# 提取特征
features = model.predict(img_array)

总结

图像特征提取是计算机视觉中的重要任务,可以通过传统的方法(如边缘检测、角点检测、纹理特征)和现代的深度学习方法(如卷积神经网络)来实现。深度学习方法提供了更强大的特征提取能力,能够自动从数据中学习有意义的特征,并且在复杂的视觉任务中表现优异。选择适当的特征提取方法和模型取决于具体的任务和应用场景。

这篇关于CV学习笔记3-图像特征提取的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1094641

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个