Kruskal算法介绍与实现

2024-08-21 15:08
文章标签 算法 实现 介绍 kruskal

本文主要是介绍Kruskal算法介绍与实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最小生成树MinimumSpanning Tree,MST)或者称为最小代价生成树:对无向连通图的生成树,各边的全值总和称为生成树的权,权最小的生成树称为最小生成树。

构造最小生成树的准则有三条:

1)必须只使用该网络中的边来构造最小生成树;

2)必须使用且仅使用n-1条边来连接网络中的n个顶点;

3)不能使用产生回路的边。

构造最小生成树的算法主要有:克鲁斯卡尔(Kruskal)算法、Boruvka算法、和普里姆(Prim)算法,他们均遵循以上准则,且都采用了一种逐步求解的策略。

Kruskal算法的基本思想是以边为主导地位,始终都是选择当前可用的最小权值的边,步骤如下:

1)设一个有n个顶点的连通网络为GV,E),最初先构造一个只有n个顶点,没有边的非连通图T{V,Ø},图中每个顶点自成一个连通分量;

2)当在E中选择一条具有最小权值的边时,若该边的两个顶点落在不同的连通分量上,则将此边加入到T中;否则,即这条边的两个顶点落在同一个连通分量上,则将此边舍去(此后永不选用这条边),重新选择一条权值最小的边;

3)如此重复下去,直到所有顶点在同一个连通分量上为止。

Kruskal算法实现

以下图无向网为例:


利用Kruskal算法求上图所示的无向网的最小生成树,并输出依次选择的各条边及最终求得的最小生成树的权。数据输入格式:第一行为顶点个数n和边数m,第二行开始为每条边的数据:u,v,w,分别表示这条边的两个顶点及边上的权值。顶点序号从1开始计起。

解:Code

#include<stdio.h>
#include<stdlib.h>
#include<iostream>
using namespace std;#define MAXN 11		//顶点个数的最大值
#define MAXM 20		//边的个数的最大值
struct edge			//边
{int u, v, w;
}edges[MAXM];		//边的数组
int parent[MAXN];	//parent[i]为顶点i所在集合对应的树中的根结点
int n, m;			//顶点个数、边的个数
int i, j;			//循环变量
void UFset()		//初始化 
{for(i = 1; i <= n; i++) parent[i] = -1;
}
int Find(int x)		//查找并返回结点x所属集合的根结点
{int s;			//查找位置for(s = x; parent[s] >=0; s = parent[s]) ;while(s != x)	//优化方案——压缩路径,使后续的查找操作加速{int tmp = parent[x];parent[x] = s;x = tmp;}return s;
}
//运用并查集,将两个不同集合的元素进行合并,使两个集合中任意两个元素都连通
void Union(int R1, int R2)
{int r1 = Find(R1), r2 = Find(R2);		//r1和r2分别为R1和R2的根结点int tmp = parent[r1] + parent[r2];		//两个集合结点数之和(负数)//如果R2所在树结点个数 > R1所在树结点个数(注意parent[r1]是负数)if(parent[r1] > parent[r2]){parent[r1] = r2;parent[r2] = tmp;}else{parent[r2] = r1;parent[r1] = tmp;}
}
int cmp(const void *a, const void *b)		//实现从小到大的比较函数
{edge aa = *(const edge *)a, bb = *(const edge *)b;return aa.w-bb.w;
}
void Kruskal()
{int sumweight = 0;		//生成树的权值int num = 0;			//已选用的边的数目UFset();				//初始化parent数组for(i = 0; i < m; i++){if(Find(edges[i].u) != Find(edges[i].v)){printf("%d %d %d\n", edges[i].u, edges[i].v, edges[i].w);sumweight += edges[i].w; num++;Union(edges[i].u, edges[i].v);}if(num >= n-1) break;}printf("The weight of MST is : %d\n", sumweight);
}
void main()
{scanf("%d%d", &n, &m);	//读入顶点个数和边数for(int i = 0; i < m; i++)scanf("%d%d%d", &edges[i].u, &edges[i].v, &edges[i].w);	//读入边的起点和终点printf("The edges chosen are :\n");qsort(edges, m, sizeof(edges[0]), cmp);	//对边按权值从小到大排序Kruskal();
}
运行结果:


这篇关于Kruskal算法介绍与实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1093506

相关文章

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

Android实现在线预览office文档的示例详解

《Android实现在线预览office文档的示例详解》在移动端展示在线Office文档(如Word、Excel、PPT)是一项常见需求,这篇文章为大家重点介绍了两种方案的实现方法,希望对大家有一定的... 目录一、项目概述二、相关技术知识三、实现思路3.1 方案一:WebView + Office Onl

C# foreach 循环中获取索引的实现方式

《C#foreach循环中获取索引的实现方式》:本文主要介绍C#foreach循环中获取索引的实现方式,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、手动维护索引变量二、LINQ Select + 元组解构三、扩展方法封装索引四、使用 for 循环替代

Spring Security+JWT如何实现前后端分离权限控制

《SpringSecurity+JWT如何实现前后端分离权限控制》本篇将手把手教你用SpringSecurity+JWT搭建一套完整的登录认证与权限控制体系,具有很好的参考价值,希望对大家... 目录Spring Security+JWT实现前后端分离权限控制实战一、为什么要用 JWT?二、JWT 基本结构

Java实现优雅日期处理的方案详解

《Java实现优雅日期处理的方案详解》在我们的日常工作中,需要经常处理各种格式,各种类似的的日期或者时间,下面我们就来看看如何使用java处理这样的日期问题吧,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言一、日期的坑1.1 日期格式化陷阱1.2 时区转换二、优雅方案的进阶之路2.1 线程安全重构2

Android实现两台手机屏幕共享和远程控制功能

《Android实现两台手机屏幕共享和远程控制功能》在远程协助、在线教学、技术支持等多种场景下,实时获得另一部移动设备的屏幕画面,并对其进行操作,具有极高的应用价值,本项目旨在实现两台Android手... 目录一、项目概述二、相关知识2.1 MediaProjection API2.2 Socket 网络

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

Redis消息队列实现异步秒杀功能

《Redis消息队列实现异步秒杀功能》在高并发场景下,为了提高秒杀业务的性能,可将部分工作交给Redis处理,并通过异步方式执行,Redis提供了多种数据结构来实现消息队列,总结三种,本文详细介绍Re... 目录1 Redis消息队列1.1 List 结构1.2 Pub/Sub 模式1.3 Stream 结

C# Where 泛型约束的实现

《C#Where泛型约束的实现》本文主要介绍了C#Where泛型约束的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录使用的对象约束分类where T : structwhere T : classwhere T : ne

将Java程序打包成EXE文件的实现方式

《将Java程序打包成EXE文件的实现方式》:本文主要介绍将Java程序打包成EXE文件的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录如何将Java程序编程打包成EXE文件1.准备Java程序2.生成JAR包3.选择并安装打包工具4.配置Launch4