Scikit中使用Grid_Search来获取模型的最佳参数

2024-08-21 11:08

本文主要是介绍Scikit中使用Grid_Search来获取模型的最佳参数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. grid search是用来寻找模型的最佳参数

先导入一些依赖包

from sklearn.ensemble import GradientBoostingClassifier
from sklearn.grid_search import GridSearchCV
from sklearn import metrics
import numnpy as np
import pandas as pd

2. 设置要查找的参数

params={'learning_rate':np.linspace(0.05,0.25,5), 'max_depth':[x for x in range(1,8,1)], 'min_samples_leaf':[x for x in range(1,5,1)], 'n_estimators':[x for x in range(50,100,10)]}

3. 设置模型和评价指标,开始用不同的参数训练模型

clf = GradientBoostingClassifier()
grid = GridSearchCV(clf, params, cv=10, scoring="f1")
grid.fit(X, y)

scoring所有可能情况如下:

  • Classification
scoringfunctioncomment
accuracymetrics.accuracy_score
average_precisionmetrics.average_precision_score
f1metrics.f1_scorefor binary targets
f1_micrometrics.f1_scoremicro-averaged
f1_macrometrics.f1_scoremacro-averaged
f1_weightedmetrics.f1_scoreweighted average
f1_samplesmetrics.f1_scoreby multilabel sample
neg_log_lossmetrics.log_lossrequires predict_proba support
precision etc.metrics.precision_scoresuffixes apply as with “f1”
recall etc.metrics.recall_scoresuffixes apply as with “f1”
roc_aucmetrics.roc_auc_score
  • Clustering
scoringfunctioncomment
adjusted_rand_scoremetrics.adjusted_rand_score
  • Regression
scoringfunctioncomment
neg_mean_absolute_errormetrics.mean_absolute_error
neg_mean_squared_errormetrics.mean_squared_error
neg_median_absolute_errormetrics.median_absolute_error
r2metrics.r2_score

4. 查看最佳分数和最佳参数

grid.best_score_    #查看最佳分数(此处为f1_score)
grid.best_params_   #查看最佳参数

这里写图片描述

5. 获取最佳模型

grid.best_estimator_

这里写图片描述

6. 利用最佳模型来进行预测

best_model=grid.best_estimator_
predict_y=best_model.predict(Test_X)
metrics.f1_score(y, predict_y)

这篇关于Scikit中使用Grid_Search来获取模型的最佳参数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1092982

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

如何在页面调用utility bar并传递参数至lwc组件

1.在app的utility item中添加lwc组件: 2.调用utility bar api的方式有两种: 方法一,通过lwc调用: import {LightningElement,api ,wire } from 'lwc';import { publish, MessageContext } from 'lightning/messageService';import Ca

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma