使用对比!SLS 数据加工 SPL 与旧版 DSL 场景对照

2024-08-21 09:44

本文主要是介绍使用对比!SLS 数据加工 SPL 与旧版 DSL 场景对照,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者:灵圣

概述

如前一篇《SLS 数据加工全面升级,集成 SPL 语法》所述,SLS 数据加工集成了 SLS 数据处理语法 SPL。与旧版本数据加工 DSL 相比,SPL 在处理非结构化数据的场景中,其语法简洁度上有很多提升,比如中间类型保持、字段引用、无缝兼容 SQL 函数等。

这里我们继续讨论在不同的数据处理需求中,新版数据加工 SPL 与旧版数据加工 DSL 的使用对照。对于数据同步的场景,即不需要做任何数据处理,新版 SPL 与旧版 DSL 均传入空逻辑即可,以下不再赘述。

场景一:数据过滤与清洗

在日常运维中,错误日志分析是发现、定位问题的关键步骤。这里我们就以服务日志为例,介绍如何应用数据加工完成数据清洗。

旧版数据加工中,使用 e_keep/e_drop 完成数据清洗,对应的新版数据加工 SPL 中则使用 where 指令。

精确匹配

需要筛选出错误日志,即级别 level 字段值为字符串 ERROR。

模糊匹配

由于不同服务模块的编码标准差异,如果 level 字段的值并非固定,可能是 ERROR、ERR 或者 E 等。这个场景下就需要进行字符串模糊匹配。

数值范围

除了文本日志的筛选,我们还需要数值范围的比对。比如访问日志中,我们需要筛选出用户使用错误,以便分析哪些操作可能存在设计不合理,即筛选出状态码字段 status 值在 4xx 范围的数据。

存在性检查

另一个运维场景中,如果服务运行错误则会写出 error 字段,否则 error 字段不存在。我们需要筛选出包含 error 的数据条目。

场景二:字段管理

新字段构造

SPL 使用 extend 指令完成字段赋值操作,相当于数据加工 DSL 中的 e_set。

筛选、排除、重命名

SPL 提供原地处理指定字段的能力,即不需要给定完整的数据 Schema(包括字段列表、及其类型),可以直接操作给定字段,且不影响其他不相关的字段。

条件表达式

条件表达式对于处理混杂在一起的不同类型的数据是关键需求。SPL 通过 SQL 表达式完成条件判断。

场景三:时间信息解析与格式化

在 SPL 执行过程中,SLS 日志时间字段类型始终保持为数值类型 INTEGER 或者 BIGINT。SLS 日志字段包括数据时间时间戳字段 time 和数据时间纳秒部分字段 time_ns_part。需要更新数据时间时,须使用 extend 指令操作。

场景四:非结构或半结构化数据提取

在机器数据处理场景中,从非结构化或半结构化数据中提取关键信息,是一个繁琐的过程。因为数据没有固定的模式,需考虑太多处理细节,但处理的效率要求又极高。SPL 提供指令实现不同的数据提取,比如正则、JSON、CSV 等。

正则文本提取

JSON 结构数据提取

CSV 格式数据提取

相关链接:

[1] JsonPath

https://github.com/json-path/JsonPath

[2] JMES 语法

https://help.aliyun.com/zh/sls/user-guide/jmespath-syntax

[3] CSV RFC 4180

https://www.loc.gov/preservation/digital/formats/fdd/fdd000323.shtml

这篇关于使用对比!SLS 数据加工 SPL 与旧版 DSL 场景对照的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1092804

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件