机器学习(第六关--文本特征抽取)

2024-08-21 07:04

本文主要是介绍机器学习(第六关--文本特征抽取),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

以下内容,皆为原创,制作实属不易,感谢大家的观看和关注。

在此真诚的祝愿大家,生活顺顺利利,身体健健康康,前途似锦。

第一关:机器学习概念和流程http://t.csdnimg.cn/IuHh4
第二关:数据集的使用http://t.csdnimg.cn/1AD9D
第三关:特征工程-字典特征提取http://t.csdnimg.cn/tSES1
第四关:特征工程-文本特征提取http://t.csdnimg.cn/HSGhz
第五关:特征工程--中文文本特征提取http://t.csdnimg.cn/iN7e6

 

一. 关键词的作用

关键词:在某个类别的文章中,出现的次数很多,但是在别的类型文章中就少。

关键词的作用:这样我们就可以判断文章是什么类型的了,比如说一个文章里面提到的大多是“共享”、“车”,所以大概率是说共享单车或者共享汽车的,属于科技类文章

       显而易见,左边是科技类文章,右边是生活健康类文章。

        那么文本特征提取有两个方法,我们这个章节学习第二个TfidfVectorizer

CountVectorizerTfidfVectorizer

二.Tf-idf文本特征提取 


        1.TF-IDF的主要思想

        如果某个词或短语在一篇文章中出现的概率高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分能力,适合用来分类
TF-IDF作用:用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度


          2.公式

         词频(termfrequency,tf)指的是某一个给定的词语在该文件中出现的频率。  逆向文档频率(inversedocumentfrequency,idf)是一个词语普遍重要性的度量。某一特定词语的idf,可以由总文件数目除以包含该词语之文件的数目,再将得到的取以10为底的对数得到。

      3.代码API

sklearn.feature_extraction.text.TfidfVectorizer(stop_words=None,...)返回词的权重矩阵


TfidfVectorizer.fit_transform(X)
·X:文本或者包含文本字符串的可迭代对象(列表或者字符串等)
·返回值:返回sparse矩阵


TfidfVectorizerinverse_transform(X)
·X:array数组或者sparse矩阵
返回值:转换之前数据格式


TfidfVectorizer.get_feature_names0
·返回值:单词列表

        好吧,这个可能你们看着有点懵,我们还是以实际代码为例。

from sklearn.feature_extraction.text import TfidfVectorizer
import jieba# 原始文本数据
data = ["真正的勇气是一种精神的力量,人格的力量,智慧的力量。","拥有了这种力量,我们就能独自越过困难堆成的高山;","拥有这种力量,我们就能克服生活的磨难;拥有了这种力量,我们就能成为命运的主宰,始终扬起胜利的风帆。"]# 使用CountVectorizer,设置分析器为jieba分词
vectorizer = TfidfVectorizer(analyzer='word', tokenizer=jieba.cut)# 计算词频矩阵
X = vectorizer.fit_transform(data)# 输出词频矩阵
print("词频矩阵:\n", X.toarray())# 输出特征名称
print("特征名称:\n", vectorizer.get_feature_names_out())

 

 4.总结

        我们可以看到,这里面的关键词,可以判断是一个励志语句类型的。事实确实也是如此,因为我们自己传进去的data,自己肯定知道。

        你看到词频矩阵了吗?那里面的值,越大的就越能体现重要性和分类意义。

三.提问时刻

                那我们特征提取的意义在哪里呢?

        我们将不是数值的数据 转为 数值,进行特征值化,可以更好的了解和处理每个数据的特征。就像我们上面一样。知道了哪些词是特征,哪些词是出现次数比较多的,然后还是比较重要的。

四.感谢观看 

  感谢大家的观看,祝愿大家的生活顺顺利利,生活不止工作,陪陪自己的家人。大家拜拜~ 

 

这篇关于机器学习(第六关--文本特征抽取)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1092459

相关文章

通过C#获取PDF中指定文本或所有文本的字体信息

《通过C#获取PDF中指定文本或所有文本的字体信息》在设计和出版行业中,字体的选择和使用对最终作品的质量有着重要影响,然而,有时我们可能会遇到包含未知字体的PDF文件,这使得我们无法准确地复制或修改文... 目录引言C# 获取PDF中指定文本的字体信息C# 获取PDF文档中用到的所有字体信息引言在设计和出

Java操作xls替换文本或图片的功能实现

《Java操作xls替换文本或图片的功能实现》这篇文章主要给大家介绍了关于Java操作xls替换文本或图片功能实现的相关资料,文中通过示例代码讲解了文件上传、文件处理和Excel文件生成,需要的朋友可... 目录准备xls模板文件:template.xls准备需要替换的图片和数据功能实现包声明与导入类声明与

python解析HTML并提取span标签中的文本

《python解析HTML并提取span标签中的文本》在网页开发和数据抓取过程中,我们经常需要从HTML页面中提取信息,尤其是span元素中的文本,span标签是一个行内元素,通常用于包装一小段文本或... 目录一、安装相关依赖二、html 页面结构三、使用 BeautifulSoup javascript

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学