【前缀和算法】--- 一维和二维前缀和模板

2024-08-20 23:36

本文主要是介绍【前缀和算法】--- 一维和二维前缀和模板,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 Welcome to 9ilk's Code World

       

(๑•́ ₃ •̀๑) 个人主页:       9ilk

(๑•́ ₃ •̀๑) 文章专栏:    算法Journey  


本文开始,博主开始讲解有关前缀和的算法,本篇博客我们先来了解一下有关前缀和的两个模板。


🏠 一维前缀和模板

📌 题目内容

一维前缀和

📌题目解析

  • 数组的下标是从1开始的。
  • 数组中每个值的范围是−10^9 ≤ a[i] ≤ 10^9,因此我们需要考虑如果多个值相加用int可能溢出,可以考虑用long long.

📌算法原理

✏️ 思路一:暴力解法

 暴力解法很简单就是进行模拟,每次查询从L下标开始遍历直到到R下标。最坏情况是L是1下标,而R是n下标,n为数组长度。因此时间复杂度为O(q*n).

有没有什么优化的解法?

✏️ 思路二:前缀和

前缀和算tg法分为两步:1.预处理出来一个前缀和数组。2.使用前缀和数组。它可以用来快速求出数组中某一个连续区间的和。

  • 预处理出前缀和数组

假设有一个数组arr,同时有个相关联的数组dp,dp[i]表示的是arr数组[1,i]区间内所有值和。

我们发现,比如dp[3]是【1,3】区间值的和,那么就相当于是【1,2】区间的和+arr[3].

因此我们可以得出公式dp[i] = dp[i-1] + arr[i].

通过公式我们在遍历一遍数组的同时,就可以求出前缀和数组。

  • 使用前缀和数组

题目要我们求出[l,r]区间内值的和,由于我们提前求出了前缀和数组,我们发现所求区间 = 总和 - 前一段区间,因此【l,r】= dp[r] - dp[l-1],这个过程是很快的达到了O(1)

参考代码:

typedef long long ll;
int main() 
{int n = 0;int q = 0; //查询次数cin >> n >> q;vector<ll> v(n+1,0);vector<ll> dp(n+1,0);ll prev = 0;//获得前缀和数组//dp[i]表示的是从1到i区间值的总和for(int i = 1 ; i <= n ; i++){cin >> v[i];dp[i] = dp[i-1] + v[i];} //使用前缀和数组while(q--){int l = 0;int r = 0;cin >> l >> r;cout << dp[r] - dp[l-1] << endl; }return 0;
}
  • 细节问题

我们前缀和数组下标是从1开始的,如果下标从0开始,当求[0,2]区间的值之和时就转化成dp[2] - dp[-1]这个dp[-1]是个边界情况需要我们特殊处理且原本数组没有-1开始的;如果下标从1开始,当求[1,2]区间的值之和时转化成dp[2] - dp[0],对于dp[0]我们就容易将它处理为0即可

总结:前缀和数组下标从1开始,是为了处理边界情况。

🏠 二维前缀和数组

📌 题目内容

二维前缀和

📌 题目解析

  • 本题数据范围仍然过大,用int会有溢出的风险。
  • 题目要我们求的是以(x1,y1)为左上角,(x2,y2)为右下角的子矩阵的和。

📌 算法原理

✏️ 思路一:暴力解法

暴力解法也就是模拟从第一个点开始直接按照划分区域进行遍历,最坏情况是整个矩阵,时间复杂度是O(n*m*q).

✏️ 思路二:二维前缀和

  • 预处理出二维前缀和数组

假设有一个二维数组arr,dp数组是一个与它关联的数组。dp[i][j]表示以(1,1)为左上角,(i,j)为右上角形成的子矩阵中值之和。任取一块区域,假设D为(i,j)点,若我们要求dp[i][j]也就是求(1,1)到(i,j)区域的和,我们可以将这四部分相加,由于B和C不好求,我们可以利用A(dp[i-1][j-1])来间接求这两部分,但是不要忘记减去多进来的A。由于A+B和A+C在dp数组中分别对应的是dp[i-1][j]和dp[i][j-1],因此我们可以得到公式:

dp[ i ][ j ] = dp[ i-1 ][ j ] + dp[ i ][ j-1 ] + arr[ i ][ j ] - dp[ i-1][ j-1 ].

通过公式,我们在遍历二维数组时就可以求出对应的dp二维数组。

  • 使用二维前缀和数组

题目要我们求以(x1,y1)为左上角,(x2,y2)为右上角区域的值之和,也就是求区域D。因此D可以由整体减去A,B,C三部分,由于B和C不好求,所以我们利用A间接求。于是有D=(A+B+C+D) - (A+C) - (A+B) +A。对于A就是dp[x1][y1],A+B就是dp[x1-1][y2],A+C就是dp[x2][y1-1],于是得到公式:D = dp[x2][y2] - dp[x2][y1-1] - dp[x1-1][y2] + dp[x1-1][y1-1]。此时 我们由于提前得到的二维前缀和数组,我们能很快得出D的值,时间复杂度是O(1).

时间复杂度优化为了O(m*n) + O(q).

参考代码:

int main() 
{int n = 0; //行 int m = 0; //列int q = 0; //查询次数cin >> n >> m >> q;vector<vector<long long>> vv(n + 1);vector<vector<long long>> dp(n + 1);for (int i = 0; i <= n; i++){vv[i].resize(m + 1, 0);dp[i].resize(m + 1, 0);if (i >= 1){for (int j = 1; j <= m; j++){cin >> vv[i][j];}}}for (int i = 1; i <= n; i++){for (int j = 1; j <= m; j++){dp[i][j] = dp[i - 1][j] + dp[i][j - 1] + vv[i][j] - dp[i-1][j-1];}}while (q--){int x1, x2, y1, y2 = 0;cin >> x1 >> y1 >> x2 >> y2;cout << dp[x2][y2] - dp[x1 - 1][y2] - dp[x2][y1 - 1] + dp[x1 - 1][y1 - 1] << endl;}return 0;
}

总结:

1. 一维和二维前缀和数组下标都是从1开始。

2.当我们需要快速求出一段连续区间或区域时,可以考虑用前缀和数组,用前缀和数组间接求我们需要的。

3.我们可以根据场景推导出公式获得前缀和数组。

这篇关于【前缀和算法】--- 一维和二维前缀和模板的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1091492

相关文章

IDEA自动生成注释模板的配置教程

《IDEA自动生成注释模板的配置教程》本文介绍了如何在IntelliJIDEA中配置类和方法的注释模板,包括自动生成项目名称、包名、日期和时间等内容,以及如何定制参数和返回值的注释格式,需要的朋友可以... 目录项目场景配置方法类注释模板定义类开头的注释步骤类注释效果方法注释模板定义方法开头的注释步骤方法注

C++中初始化二维数组的几种常见方法

《C++中初始化二维数组的几种常见方法》本文详细介绍了在C++中初始化二维数组的不同方式,包括静态初始化、循环、全部为零、部分初始化、std::array和std::vector,以及std::vec... 目录1. 静态初始化2. 使用循环初始化3. 全部初始化为零4. 部分初始化5. 使用 std::a

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

C++中函数模板与类模板的简单使用及区别介绍

《C++中函数模板与类模板的简单使用及区别介绍》这篇文章介绍了C++中的模板机制,包括函数模板和类模板的概念、语法和实际应用,函数模板通过类型参数实现泛型操作,而类模板允许创建可处理多种数据类型的类,... 目录一、函数模板定义语法真实示例二、类模板三、关键区别四、注意事项 ‌在C++中,模板是实现泛型编程

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

CSS3 最强二维布局系统之Grid 网格布局

《CSS3最强二维布局系统之Grid网格布局》CS3的Grid网格布局是目前最强的二维布局系统,可以同时对列和行进行处理,将网页划分成一个个网格,可以任意组合不同的网格,做出各种各样的布局,本文介... 深入学习 css3 目前最强大的布局系统 Grid 网格布局Grid 网格布局的基本认识Grid 网

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为