学习大数据DAY40 基于 hive 的数据处理

2024-08-20 21:04

本文主要是介绍学习大数据DAY40 基于 hive 的数据处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

Hive 复合数据定义方法

Hive 复合数据查询方法

hive 内置函数

上机练习


Hive 复合数据定义方法

Hive 复合数据查询方法

hive 内置函数

-- 查看系统自带的函数
show functions;
-- 显示自带的函数的用法
desc function upper;
-- 详细显示自带的函数的用法
desc function extended upper;

上机练习

1 导入 user 数据 id name sex age address date lev s_info m_info a_info
2 使用三种复合数据类型 struct map array 存储 info 数据
python 清洗数据:
with open(r"D:\智云大数据\数据源
\user\user_info.txt",'r',encoding="utf-8") as f:
LineRead=f.readlines()
# print(LineRead)
for i in LineRead:
list1=[]
list_i=i.split('\t')
# print(list_i)
# 把字典的值复制加到每行的末尾
for j in eval(list_i[7]).values():
list1.append(j)
str1='|'.join(list1)
list_i[7]=str1
list_i.append(str1)
# print(list_i)
list_i[8]='|'.join(list_i[8].split(',')).strip('\n') #
把第九列转化成可以导入 struct 的形式
str_i=','.join(list_i) # 每行每个数据用逗号隔开
# print(str_i)
with open(r"D:\智云大数据
\user_info_disposal_new.txt",'a',encoding='utf-8') as h:
h.writelines(str_i+"\n")
h.close()
f.close()
hive 建表和导入数据:
drop table if exists user_info;
create table if not exists user_info
(
id int,
name string,
sex string,
age tinyint,
address string,
date_info string,
lev tinyint,
a_info array<string>,
m_info map<string,string>,
s_info
struct<systemtype:string,education:string,marriage_status:string,phon
ebrand:string>
)
row format delimited
fields terminated by ','
collection items terminated by '|'
MAP keys terminated by ':'
lines terminated by '\n'
load data local inpath '/root/user_info_disposal_new.txt'
into table user_info;
结果:(双击 object 能看见值)
3 指标计算
3.1 按月统计各个地区男女生人数
select date_format(date_info,'YYYY-MM'),address,sex,count(1) from
user_info
group by date_format(date_info,'YYYY-MM'),address,sex3.2 统计各地区的不同手机型号使用人数,并按照老中青(35 以下青年 男 65 岁
以下女 55 岁以下中年 男 65 岁以上女 55 岁以上老年)年龄 划分
地区 安卓使用人数{老 中 青} ios 使用人数{老 中 青}
with SystemtypeAndAge as
(
select
case when m_info["systemtype"]='android' then 'android'
when m_info["systemtype"]='ios' then 'ios'end as systemtype,
case when age<35 then '青年'
when sex='male' and age<65 or sex='female' and age<55 then '中年'
else '老年'
end as AgeBracket
from user_info
)
select systemtype,AgeBracket,count(1) from SystemtypeAndAge
group by systemtype,AgeBracket

3.2 统计各地区的不同手机型号使用人数,并按照老中青(35 以下青年 男 65 岁
以下女 55 岁以下中年 男 65 岁以上女 55 岁以上老年)年龄 划分
地区 安卓使用人数{老 中 青} ios 使用人数{老 中 青}
with SystemtypeAndAge as
(
select
case when m_info["systemtype"]='android' then 'android'
when m_info["systemtype"]='ios' then 'ios'end as systemtype,
case when age<35 then '青年'
when sex='male' and age<65 or sex='female' and age<55 then '中年'
else '老年'
end as AgeBracket
from user_info
)
select systemtype,AgeBracket,count(1) from SystemtypeAndAge
group by systemtype,AgeBracket

3.3 统计不同地区,不同学历,使用的手机品牌(去重)collect_list
地区 学历 手机品牌列表
select user_info.address,education
,collect_list(distinct m_info["phonebrand"])
from user_info
left join
(
select address,
case m_info["education"] when "bachelor" then 'bachelor'
when "doctor" then 'doctor'when "master" then 'master'
end as education
from user_info
) EducationInAddress on user_info.address=EducationInAddress.address
group by user_info.address,education

3.4 统计不同等级,各个手机品牌的使用人数(需要行转列)
等级 phonebrand_list
{iphone6:5 iphone7:5 .....mi:5 .....iphoneXS:2}
这题我不会,老师沉迷黑吗喽作业视频讲解都还没发......
第三阶段太吃自学能力了,hive语法基本要去网上找。

这篇关于学习大数据DAY40 基于 hive 的数据处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1091165

相关文章

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

SpringValidation数据校验之约束注解与分组校验方式

《SpringValidation数据校验之约束注解与分组校验方式》本文将深入探讨SpringValidation的核心功能,帮助开发者掌握约束注解的使用技巧和分组校验的高级应用,从而构建更加健壮和可... 目录引言一、Spring Validation基础架构1.1 jsR-380标准与Spring整合1

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

SpringBatch数据写入实现

《SpringBatch数据写入实现》SpringBatch通过ItemWriter接口及其丰富的实现,提供了强大的数据写入能力,本文主要介绍了SpringBatch数据写入实现,具有一定的参考价值,... 目录python引言一、ItemWriter核心概念二、数据库写入实现三、文件写入实现四、多目标写入

使用Python将JSON,XML和YAML数据写入Excel文件

《使用Python将JSON,XML和YAML数据写入Excel文件》JSON、XML和YAML作为主流结构化数据格式,因其层次化表达能力和跨平台兼容性,已成为系统间数据交换的通用载体,本文将介绍如何... 目录如何使用python写入数据到Excel工作表用Python导入jsON数据到Excel工作表用

Mysql如何将数据按照年月分组的统计

《Mysql如何将数据按照年月分组的统计》:本文主要介绍Mysql如何将数据按照年月分组的统计方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql将数据按照年月分组的统计要的效果方案总结Mysql将数据按照年月分组的统计要的效果方案① 使用 DA

鸿蒙中Axios数据请求的封装和配置方法

《鸿蒙中Axios数据请求的封装和配置方法》:本文主要介绍鸿蒙中Axios数据请求的封装和配置方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.配置权限 应用级权限和系统级权限2.配置网络请求的代码3.下载在Entry中 下载AxIOS4.封装Htt

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分