认识org.apache.hadoop.io.compress解码器/编码器

2024-08-20 17:48

本文主要是介绍认识org.apache.hadoop.io.compress解码器/编码器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

认识org.apache.hadoop.io.compress解码器/编码器

编码器解码器用以执行压缩解压算法。在Hadoop里,编码/解码器是通过一个压缩解码器接口实现的。因此,例如,GzipCodec封装了gzip压缩的压缩和解压算法。下表列出了Hadoop可用的编码/解码器。

 

 压缩格式  Hadoop压缩编码/解码器
DEFLATE org.apache.hadoop.io.compress.DefaultCodec
gzip org.apache.hadoop.io.compress.GzipCodec
bzip2 org.apache.hadoop.io.compress.BZip2Codec
LZO com.hadoop.compression.lzo.LzopCodec
LZO格式是基于GPL许可的,不能通过Apache来分发许可,基于此,它的hadoop}编码/解码器必须单独下载,地址是http: //code.google.com/p/hadoop-gpl-compression/。lzop编码/解码器兼容干lzop工具,它其实就是LZO 格式,但额外还有头部,它正是我们想要的。还有一个纯LZO格式的编码/解码器LzoCodec,它使用.lzo_deflate作为扩展名(根据 DEFLATE类推,是没有头部的gzip格式)。

CompressionCodec对流进行压缩和解压缩
CompressionCodec有两个方法可以用于轻松地压缩或解压缩数据。要想对正在被写入一个输出流的数据进行压缩,我们可以使用 createOutputStream(OutputStreamout)方法创建一个CompressionOutputStream(未压缩的数据将 被写到此),将其以压缩格式写入底层的流。相反,要想对从输入流读取而来的数据进行解压缩,则调用 createInputStream(InputStreamin)函数,从而获得一个CompressionInputStream,,从而从底层的流 读取未压缩的数据。CompressionOutputStream和CompressionInputStream类似干 java.util.zip.DeflaterOutputStream和java.util.zip.DeflaterInputStream,前两者 还可以提供重置其底层压缩和解压缩功能,当把数据流中的section压缩为单独的块时,这比较重要。比如SequenceFile。

下例中说明了如何使用API来压缩从标谁输入读取的数据及如何将它写到标准输出:

public class StreamCompressor 
{public static void main(String[] args) throws Exception {String codecClassname = args[0];Class<?> codecClass = Class.forName(codecClassname);Configuration conf = new Configuration();CompressionCodec codec = (CompressionCodec)ReflectionUtils.newInstance(codecClass, conf);CompressionOutputStream out = codec.createOutputStream(System.out);IOUtils.copyBytes(System.in, out, 4096, false);out.finish();}
} 

此 应用需要压缩CompressionCodec的合法全名来作为命令行的第一个参数。我们使用ReflectionUtils来建立一个新的实例,然后获 得一个压缩好的System.out。然后我们调用IOUtils上的公共方法copyBytes()将输入复制到经过 CompressionOutputStream压缩的输出。最后,调用CompressionOutputStream.的finish()方法,从而 向压缩程序表明结束向压缩流写入数据,但不关闭流。我们可以试试以下命令行,使用StreamCompressor程序与GzipCodec压缩字符串 “Text”,然后使用gunzip从标准输入对它进行解压缩操作:


echo "Text" | hadoop StreamCompressor org.apache.hadoop.io.compress.GzipCodec  | gunzip -
Text

用CompressionCodecFactory方法来推断CompressionCodecs

在阅读一个压缩文件时,我们通常可以从其扩展名来推断出它的编码/解码器。以.gz结尾的文件可以用GzipCodec来阅读,如此类推。每个压缩格式的扩展名均以下表所示:

 

 压缩格式  工具  算法  文件扩展名  多文件  可分割性
DEFLATEa DEFLATE .deflate
gzip gzip DEFLATE .gz
ZIP zip DEFLATE .zip 是,在文件范围内
bzip2 bzip2 bzip2 .bz2
LZO lzop LZO .lzo

 

CompressionCodecFactory提供了getCodec()方法,从而将文件扩展名映射到相应的CompressionCodec。此方法接受一个Path对象。下面的例子显示了一个应用程序,此程序便使用这个功能来解压缩文件。

public class FileDecompressor {public static void main(String[] args) throws Exception {String uri = args[0];Configuration conf = new Configuration();FileSystem fs = FileSystem.get(URI.create(uri), conf);Path inputPath = new Path(uri);CompressionCodecFactory factory = new CompressionCodecFactory(conf);CompressionCodec codec = factory.getCodec(inputPath);if (codec == null) {System.err.println("No codec found for " + uri);System.exit(1);}String outputUri =CompressionCodecFactory.removeSuffix(uri, codec.getDefaultExtension());InputStream in = null;OutputStream out = null;try {in = codec.createInputStream(fs.open(inputPath));out = fs.create(new Path(outputUri));IOUtils.copyBytes(in, out, conf);} finally {IOUtils.closeStream(in);IOUtils.closeStream(out);}}
}
编码/解码器一旦找到,就会被用来去掉文件名后缀生成输出文件名(通过CompressionCodecFactory的静态方法removeSuffix()来实现)。这样,如下调用程序便把一个名为file.gz的文件解压缩为file文件:
% hadoop FileDecompressor file.gz
CompressionCodecFactory 从io.compression.codecs配置属性定义的列表中找到编码/解码器。默认情况下,这个列表列出了Hadoop提供的所有编码/解码器 (见表4-3),如果你有一个希望要注册的编码/解码器(如外部托管的LZO编码/解码器)你可以改变这个列表。每个编码/解码器知道它的默认文件扩展 名,从而使CompressionCodecFactory可以通过搜索这个列表来找到一个给定的扩展名相匹配的编码/解码器(如果有的话)。
 属性名  类型  默认值  描述
io.compression.codecs 逗号分隔的类名 org.apache.hadoop.io.
compress.DefaultCodec,
org.apache.hadoop.io.
compress.GzipCodec,
org.apache.hadoop.io.
compress.Bzip2Codec
用于压缩/解压的CompressionCodec列表

 

表4-3

本地库

考虑到性能,最好使用一个本地库(native library)来压缩和解压。例如,在一个测试中,使用本地gzip压缩库减少了解压时间50%,压缩时间大约减少了10%(与内置的Java实现相比 较)。表4-4展示了Java和本地提供的每个压缩格式的实现。井不是所有的格式都有本地实现(例如bzip2压缩),而另一些则仅有本地实现(例如 LZO)。

 

压缩格式 Java实现 本地实现
DEFLATE
gzip
bzip2
LZO

 

Hadoop带有预置的32位和64位Linux的本地压缩库,位于库/本地目录。对于其他平台,需要自己编译库,具体请参见Hadoop的维基百科http://wiki.apache.org/hadoop/NativeHadoop。

本地库通过Java系统属性java.library.path来使用。Hadoop的脚本在bin目录中已经设置好这个属性,但如果不使用该脚本,则需要在应用中设置属性。

默认情况下,Hadoop会在它运行的平台上查找本地库,如果发现就自动加载。这意味着不必更改任何配置设置就可以使用本地库。在某些情况下,可能 希望禁用本地库,比如在调试压缩相关问题的时候。为此,将属性hadoop.native.lib设置为false,即可确保内置的Java等同内置实现 被使用(如果它们可用的话)。

CodecPool(压缩解码池)

如果要用本地库在应用中大量执行压缩解压任务,可以考虑使用CodecPool,从而重用压缩程序和解压缩程序,节约创建这些对象的开销。

下例所用的API只创建了一个很简单的压缩程序,因此不必使用这个池。此应用程序使用一个压缩池程序来压缩从标准输入读入然后将其写入标准愉出的数据:

public class PooledStreamCompressor {public static void main(String[] args) throws Exception {String codecClassname = args[0];Class<?> codecClass = Class.forName(codecClassname);Configuration conf = new Configuration();CompressionCodec codec = (CompressionCodec)ReflectionUtils.newInstance(codecClass, conf);Compressor compressor = null;try {compressor = CodecPool.getCompressor(codec);CompressionOutputStream out = codec.createOutputStream(System.out, compressor);IOUtils.copyBytes(System.in, out, 4096, false);out.finish();} finally{CodecPool.returnCompressor(compressor);}}
} 

我 们从缓冲池中为指定的CompressionCodec检索到一个Compressor实例,codec的重载方法 createOutputStream()中使用的便是它。通过使用finally块,我们便可确保此压缩程序会被返回缓冲池,即使在复制数据流之间的字 节期间抛出了一个IOException。



这篇关于认识org.apache.hadoop.io.compress解码器/编码器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1090752

相关文章

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

Apache Tomcat服务器版本号隐藏的几种方法

《ApacheTomcat服务器版本号隐藏的几种方法》本文主要介绍了ApacheTomcat服务器版本号隐藏的几种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需... 目录1. 隐藏HTTP响应头中的Server信息编辑 server.XML 文件2. 修China编程改错误

SpringBoot使用Apache POI库读取Excel文件的操作详解

《SpringBoot使用ApachePOI库读取Excel文件的操作详解》在日常开发中,我们经常需要处理Excel文件中的数据,无论是从数据库导入数据、处理数据报表,还是批量生成数据,都可能会遇到... 目录项目背景依赖导入读取Excel模板的实现代码实现代码解析ExcelDemoInfoDTO 数据传输

Java架构师知识体认识

源码分析 常用设计模式 Proxy代理模式Factory工厂模式Singleton单例模式Delegate委派模式Strategy策略模式Prototype原型模式Template模板模式 Spring5 beans 接口实例化代理Bean操作 Context Ioc容器设计原理及高级特性Aop设计原理Factorybean与Beanfactory Transaction 声明式事物

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

hadoop开启回收站配置

开启回收站功能,可以将删除的文件在不超时的情况下,恢复原数据,起到防止误删除、备份等作用。 开启回收站功能参数说明 (1)默认值fs.trash.interval = 0,0表示禁用回收站;其他值表示设置文件的存活时间。 (2)默认值fs.trash.checkpoint.interval = 0,检查回收站的间隔时间。如果该值为0,则该值设置和fs.trash.interval的参数值相等。

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

每天认识几个maven依赖(ActiveMQ+activemq-jaxb+activesoap+activespace+adarwin)

八、ActiveMQ 1、是什么? ActiveMQ 是一个开源的消息中间件(Message Broker),由 Apache 软件基金会开发和维护。它实现了 Java 消息服务(Java Message Service, JMS)规范,并支持多种消息传递协议,包括 AMQP、MQTT 和 OpenWire 等。 2、有什么用? 可靠性:ActiveMQ 提供了消息持久性和事务支持,确保消

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。