神经网络第三篇:输出层及softmax函数

2024-06-24 11:18

本文主要是介绍神经网络第三篇:输出层及softmax函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 在上一篇专题中,我们以三层神经网络的实现为例,介绍了如何利用Python和Numpy编程实现神经网络的计算。其中,中间(隐藏)层和输出层的激活函数分别选择了 sigmoid函数和恒等函数。此刻,我们心中不难发问:为什么要花一个专题来介绍输出层及其激活函数?它和中间层又有什么区别?softmax函数何来何去?下面我们带着这些疑问进入本专题的知识点:

1 输出层概述

2 回归问题及恒等函数

3 分类问题及softmax函数

4 Python编程softmax函数

1 输出层概述

神经网络/深度学习本质上都属于机器学习问题,而我们知道,机器学习一般分为监督学习非监督学习,生活中,我们应用更多的是监督学习(简单来说需要事先通过已知的输入输出数据进行学习,然后对未知的输入数据进行预测),以神经网络为例,学习的结果,即输出层的输出值y。该输出值既可以是一个连续的无范围约束的数值(回归问题),也可以是一个离散的范围被限制(一般在0至1之间)的数值(分类问题)。所以针对不同的问题,我们对输出层的设计,即激活函数的设计应不同。一般情况下,在神经网络中,回归问题选择恒等函数作为激活函数,分类问题选择softmax函数作为激活函数


小提示:

监督学习又分为回归问题分类问题。如果想对机器学习有一个透彻而全面的理解,给大家推荐一本OReilly出版的书籍《Introduction to MachineLearning with Python》,不知道现在是否发布了中文版,但网上已经有了很多读者自己上传的中文笔记,大家也可在我的博客中获取本人上传的阅读笔记。


2 回归问题及恒等函数

回归”一词对于理工科的人来说并不陌生,直观地讲,回归问题是根据输入来预测一个连续的数值的问题。比如根据一个人的日常饮食量来预测这个人的体重,这就是一个回归问题。为让大家更加明白,我们以数学表达式为例:

                                                       

上面这个回归问题,以神经网络模型为例,首先需要向神经网络提供已知的正确的输入(食饭量和食肉量)和输出(体重),通过这些信息,模型学到了变量的权重。然后就可以对输入进行输出预测。

不难理解,我们并不需要对这样的信号加权和进行其他处理,也就是说我们直接输出食饭量和食肉量的加权和即可。因此,在输出层的设计中,输入信号应该原封不动地被输出,即激活函数h()应该选择恒等函数(用σ()表示),如下图:

                                                                       

由于激活函数选择的是恒等函数,因此输出值没有在我们的预定范围内。

3 分类问题及softmax函数

3.1 分类问题

顾名思义,“分类”就是判断一个数据集所描述的类别,比如判断图像中的人是男还是女,这里的数据集是图像数据,类别有男和女两个类别。既然是判断,那么它应该是一个概率性的问题,打个比方,一个画了浓妆艳抹的男扮女装,仅看照片,我们为了防止说话过于绝对,会以这样的方式表达:我觉得这照片有可能是男的;我觉得这照片很有可能是男的。以概率描述:我觉得这张照片是男性的可能性为60%(0.6);我觉得这张照片是男性的可能性是90%(0.9)

因此,我们对分类问题的判断结果,实际上是来自于概率。我们用上图来分析分类问题:图中的输出信号有三个y1、y2、y3,我们可以理解为这是一个三类别分类,对于输入的数据集,神经网络通过计算后得到值y1、y2、y3。这三个值的大小都应该在01之间,且它们的和应该为1。对于一个输入来说,神经网络预测的结果就是y1、y2、y3中最大值所对应的类别。比如y1、y2、y3的值分别为0.2、0.7、0.1,那么神经网络对这个输入的预测结果就是类别“乙”。

                                                                

3.2 softmax函数

通过上面的分析,回归问题我们只需将输出层的输入信号原封不动地输出即可,而分类问题我们需要考虑两个问题:

(1)每个输出信号值在0至1之间。

(2)所有输出信号的和为1。

基于以上要求,分类问题中,输出层的激活函数常用softmax函数:

                                                             

exp(x)表示ex的指数函数,ak是输出层中第k个输入信号,exp(ak)表示ak的指数函数。分母表示输出层共有n个输出信号(神经元),并计算所有输出层中的输入信号的指数和。yk是第k个神经元的输出。

仔细分析,该函数实际上等同于一个求占比的公式,读者可验证,信号加权和经softmax函数处理后完全满足上面两点要求。可以说,softmax函数很普通,只需完成指数运算求和运算除法运算

4 Python编程softmax函数

 我们已经知道了y1、y2、y3都会有一个0至1之间的数值。而最后的分类结果则取决于这三个值中最大值所对应的类别。借助numpy的广播功能就能轻松实现这样的操作。在这之前,我们需要考虑一个数值过大(溢出)的问题:softmax需要计算指数和,比如当ak中的某个值为1000时,其指数将是无穷大,由于计算机处理数值位数有限,因此有可能无法进行指数或求和运算。

为了解决这个潜在问题,我们对softmax函数作一下处理:

                              

公式表明在进行softmax的指数运算时,加上某个常数不会改变运算的结果。为了防止结果值溢出,一般会使用输入信号中的最大值的负数为这个常数,Python编程代码如下:

import numpy as np
def softmax(a):c=np.max(a) #求数组中的最大值exp=np.exp(a-c)  #指数运算sum_exp=np.sum(exp) #指数求和y=exp/sum_exp        #softmax函数值return y
"""测试"""
a=np.array([0.4,5,3])
y=softmax(a)
print(y)  #输出[0.00877593 0.87306727 0.11815681]
print(y.sum())  #输出1

程序是不是很简单?是的,在上一专题讲过的三层神经网络实现的代码中只需将恒等函数equal_function()替换为softmax()函数即可。softmax函数的输出是0到1,且输出值的总和为1,因此把softmax函数的输出概率解释为“概率”。一般而言,神经网络只把输出值最大的神经元所对应的类别作为识别结果。比如测试代码中计算得到y的输出最大值为y[1]=0.87,因此对于这个输入数据而言,预测的分类为“乙类”,也可以说有87%的概率认为预测结果为“乙类”。

总结一下,这个专题介绍了输出层及其激活函数、回归问题、分类问题、恒等函数和softmax函数。在介绍这些知识点的过程中,我们始终以预测结果为背景展开的,因此阅读完这篇文章,读者应该对机器学习或者神经网络的预测的流程有一定了解。

下一专题,我们将以手写数字识别为例,对前面的知识作整体的终结。 欢迎关注“Python生态智联”,学知识,享生活!

这篇关于神经网络第三篇:输出层及softmax函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1089997

相关文章

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

Java function函数式接口的使用方法与实例

《Javafunction函数式接口的使用方法与实例》:本文主要介绍Javafunction函数式接口的使用方法与实例,函数式接口如一支未完成的诗篇,用Lambda表达式作韵脚,将代码的机械美感... 目录引言-当代码遇见诗性一、函数式接口的生物学解构1.1 函数式接口的基因密码1.2 六大核心接口的形态学

使用TomCat,service输出台出现乱码的解决

《使用TomCat,service输出台出现乱码的解决》本文介绍了解决Tomcat服务输出台中文乱码问题的两种方法,第一种方法是修改`logging.properties`文件中的`prefix`和`... 目录使用TomCat,service输出台出现乱码问题1解决方案问题2解决方案总结使用TomCat,

C++中实现调试日志输出

《C++中实现调试日志输出》在C++编程中,调试日志对于定位问题和优化代码至关重要,本文将介绍几种常用的调试日志输出方法,并教你如何在日志中添加时间戳,希望对大家有所帮助... 目录1. 使用 #ifdef _DEBUG 宏2. 加入时间戳:精确到毫秒3.Windows 和 MFC 中的调试日志方法MFC

Python使用Colorama库美化终端输出的操作示例

《Python使用Colorama库美化终端输出的操作示例》在开发命令行工具或调试程序时,我们可能会希望通过颜色来区分重要信息,比如警告、错误、提示等,而Colorama是一个简单易用的Python库... 目录python Colorama 库详解:终端输出美化的神器1. Colorama 是什么?2.

Oracle的to_date()函数详解

《Oracle的to_date()函数详解》Oracle的to_date()函数用于日期格式转换,需要注意Oracle中不区分大小写的MM和mm格式代码,应使用mi代替分钟,此外,Oracle还支持毫... 目录oracle的to_date()函数一.在使用Oracle的to_date函数来做日期转换二.日

C++11的函数包装器std::function使用示例

《C++11的函数包装器std::function使用示例》C++11引入的std::function是最常用的函数包装器,它可以存储任何可调用对象并提供统一的调用接口,以下是关于函数包装器的详细讲解... 目录一、std::function 的基本用法1. 基本语法二、如何使用 std::function

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>