Sharding(切片)技术(解决数据库分库一致性问题)

2024-06-24 08:32

本文主要是介绍Sharding(切片)技术(解决数据库分库一致性问题),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Sharding(切片) 不是一门新技术,而是一个相对简朴的软件理念,就是当我们的数据库单机无法承受高强度的i/o时,我们就考虑利用 sharding 来把这种读写压力分散到各个主机上去。

所以Sharding 不是一个某个特定数据库软件附属的功能,而是在具体技术细节之上的抽象处理,是Horizontal Partitioning 水平扩展(或横向扩展)的解决方案,其主要目的是为突破单节点数据库服务器的 I/O 能力限制,注意这里是突破单点数据库服务器的“I/O”能力。

在MySql 5.1 中增加了对单表的 PARTITION(分区)支持,可以把一张很大的单表通过 partition 分区成很多物理文件,避免每次操作一个大文件,可以对读写新能有所提升,下面是一个 partition 分区的例子。

一张游戏的日志表,有几千万行的数据,记录了接近一年的游戏物品获取日志,如果不对它进行 partition 分区存储,每次统计和分析日志都会消耗大量的时间。然后我们新建一张分区表,把老的日志数据导入到新的数据,统计分析的时间就会节约很多。

	CREATE TABLE `xxxxxxxx` (     `crttm` int(11) NOT NULL,     `srvid` int(11) NOT NULL,     `evtid` int(11) NOT NULL,     `aid` int(11) NOT NULL,     `rid` int(11) NOT NULL,     `itmid` int(11) NOT NULL,     `itmnum` int(11) NOT NULL,     `gdtype` int(11) NOT NULL,     `gdnum` int(11) NOT NULL,     `islmt` int(11) NOT NULL,  KEY `crttm` (`crttm`),  KEY `itemid` (`itmid`),  KEY `srvid` (`srvid`),  KEY `gdtype` (`gdtype`)  ) ENGINE=myisam DEFAULT CHARSET=utf8  PARTITION BY RANGE (crttm)   (  PARTITION p201303 VALUES LESS THAN (unix_timestamp('2014-04-01')),  PARTITION p201304 VALUES LESS THAN (unix_timestamp('2014-05-01')),  PARTITION p201305 VALUES LESS THAN (unix_timestamp('2014-06-01')),  PARTITION p201306 VALUES LESS THAN (unix_timestamp('2014-07-01')),  PARTITION p201307 VALUES LESS THAN (unix_timestamp('2014-08-01')),  PARTITION p201308 VALUES LESS THAN (unix_timestamp('2014-09-01')),  PARTITION p201309 VALUES LESS THAN (unix_timestamp('2014-10-01')),  PARTITION p201310 VALUES LESS THAN (unix_timestamp('2014-11-01')),  PARTITION p201311 VALUES LESS THAN (unix_timestamp('2014-12-01')),  PARTITION p201312 VALUES LESS THAN (unix_timestamp('2015-01-01')),  PARTITION p201401 VALUES LESS THAN (unix_timestamp('2015-02-01'))  ); 

对于这种业务场景,使用 mysql 的 partition 就已经足够了,但是对于 i/o 非常频繁的大表,单机垂直升级也已经支撑不了,存储已经不是影响其性能的主要原因,这时候就要用到sharding了。

我们一般会将一张大表的唯一键作为 hash 的 key,比如我们想要水平拆分的是一张拥有3千万行数据的用户表,我们可以利用唯一的字段用户id作为拆分的依据,这样就可以依据如下的方式,将用户表水平拆分成3张,下面是伪代码,将老的用户数据导入到新的3个被水平拆分的数据库中。

if userId % 3 == 0:#insert data in user_table (user_table_0 databaseip: 127.0.0.1)
elif userId % 3 == 1:#insert data in user_table (user_table_1 databaseip: 127.0.0.2)
else:#insert data in user_table (user_table_2 databaseip: 127.0.0.3)

我们还会对每一个被拆分的数据库,做一个双主 master 的副本集备份,至于backup,我们则可以使用 percona的cluster来解决。它是比 mysql m/s 或者 m/m 更靠谱的方案。http://www.percona.com/software/percona-xtradb-cluster

所以最后拆分的拓扑图大致如下:connhash.jpg

随着我们的业务增长,数据涨到5千万了,慢慢的发现3个sharding不能满足我们的需求了,因为服务器紧张,所以这时候BOSS打算再加2个sharding,以后会慢慢加到10个sharding。

所以我们得在之前的3台sharding服务器上分别执行导入数据代码,将数据根据新的hash规则导入到每台sharding服务器上。几乎5千万行数据每行都移动了一遍,如果服务器够牛逼,Mysql每秒的插入性能能高达 2000/s,即使这样整个操作,都要让服务暂停8个小时左右。这时候DBA的脸色已经不好看了,他应该是已经通宵在导数据了。

那有没有一种更好的办法,让添加或者删除 sharding 节点对整个分片系统的数据迁移量降低呢?

我们可以利用一致性哈希算法,把用户id散列到各个 sharding 节点,这样就可以保证添加和删除节点数据迁移影响较小。关于什么是一致性哈性算法,参考我的另一篇博客:http://snoopyxdy.blog.163.com/blog/static/601174402012722102446720/

这里介绍一个Node.js模块,hashring,github主页地址如下,上面有demo和api文档:https://github.com/3rd-Eden/node-hashring这是一个使用的demo代码,我翻译了注释,供大家参考:

// 加载模块,返回HashRing的构造函数
var HashRing = require('hashring');//实例化HashRing,这个例子中,我们把各个服务器均匀的添加了,没有设置权重
// 设置了最大的缓冲区 10000
var ring = new HashRing(['127.0.0.1','127.0.0.2','127.0.0.3', '127.0.0.4'], 'md5', {'max cache size': 10000});//我们获取这个字符串的服务器ip
var server = ring.get('foo bar banana'); // returns 127.0.0.x
console.log(server)// 如果你想把数据冗余的存储在多个服务器上
ring.range('foo bar banana', 2).forEach(function forEach(server) {console.log(server); // do stuff with your server
});// 对环上移除或新增加一台服务器
ring.add('127.0.0.7').remove('127.0.0.1');var server = ring.get('foo bar banana'); // returns 127.0.0.x
console.log(server)

接下来我们就要验证这种方式的可行性。第一,假如我们有3万条数据,根据一致性哈希算法存储好了之后,这个算法是否能够较平均的将3万条数据分散到3台sharding服务器上。第二,当数据量增加到5万,然后我们增加2台sharding服务器后,这个算法移动的数据量和最终每台服务器上的数据分布是如何的。

connHashStep1.js将3万用户数据通过一致性哈希算法存储在3台服务器上

var HashRing = require('hashring');
var ring = new HashRing(['127.0.0.1','127.0.0.2','127.0.0.3', ], 'md5', {'max cache size': 10000});var record = {'127.0.0.1':0,'127.0.0.2':0,'127.0.0.3':0
};
var userMap = {}for(var i=1; i<=30000; i++){var userIdStr = i.toString();var server = ring.get(userIdStr);userMap[userIdStr] = server;record[server]++;
}console.log(record);

第一次利用一致性hash之后,每台服务器存储的用户数据。

{ '127.0.0.1': 9162, '127.0.0.2': 9824, '127.0.0.3': 11014 }

connHashStep2.js将5万用户数据通过一致性哈希算法存储在3台服务器上,然后用户数据5万不改变,新增加2台sharding,查看新的5台sharding的用户数据存储情况以及计算移动的数据条数。

var HashRing = require('hashring');
var ring = new HashRing(['127.0.0.1','127.0.0.2','127.0.0.3', ], 'md5', {'max cache size': 10000});var record = {'127.0.0.1':0,'127.0.0.2':0,'127.0.0.3':0
};
var userMap = {}for(var i=1; i<=50000; i++){var userIdStr = i.toString();var server = ring.get(userIdStr);userMap[userIdStr] = server;record[server]++;
}console.log(record);//新增加2个sharding节点
var record2 = {'127.0.0.1':0,'127.0.0.2':0,'127.0.0.3':0,'127.0.0.4':0,'127.0.0.5':0,
};
ring.add('127.0.0.4').add('127.0.0.5')var moveStep = 0;
for(var i=1; i<=50000; i++){var userIdStr = i.toString();var server = ring.get(userIdStr);//当用户的存储server改变,则计算移动if(userMap[userIdStr] && userMap[userIdStr] != server){userMap[userIdStr] = server;moveStep++;}record2[server]++;
}
console.log(record2);
console.log('move step:'+moveStep);

5万用户数据,存储在3台服务器上的数目:

{ '127.0.0.1': 15238, '127.0.0.2': 16448, '127.0.0.3': 18314 }

当我们sharding增加到5台,存储在5台服务器上的数目:

{ '127.0.0.1': 8869,'127.0.0.2': 9972,'127.0.0.3': 10326,'127.0.0.4': 10064,'127.0.0.5': 10769 }

最终我们移动的用户数量:

move step:20833

其实你会发现

20833 = 10064 + 10769 

也就是说,我们只是将1-3节点的部分数据移动到了4,5节点,并没有多余的移动一行数据。根据上面的示例,如果是5千万数据,利用一致性哈希的算法,添加2个节点,仅需2-3小时就可以完成。

那么什么时候我们需要利用一致性哈希水平拆分数据库单表呢?1、当我们拥有一个数据量非常大的单表,比如上亿条数据。2、不仅数据量巨大,这个单表的访问读写也非常频繁,单机已经无法抗住 I/O 操作。3、此表无事务性操作,如果涉及分布式事务是相当复杂的事情,在拆分此类表需要异常小心。4、查询条件单一,对此表的查询更新条件常用的仅有1-2个字段,比如用户表中的用户id或用户名。最后,这样的拆分也是会带来负面性的,当水平拆分了一个大表,不得不去修改应用程序或者开发db代理层中间件,这样会加大开发周期、难度和系统复杂性。

  • 求大牛指点不足,指出错误~

这篇关于Sharding(切片)技术(解决数据库分库一致性问题)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1089632

相关文章

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

IDEA如何切换数据库版本mysql5或mysql8

《IDEA如何切换数据库版本mysql5或mysql8》本文介绍了如何将IntelliJIDEA从MySQL5切换到MySQL8的详细步骤,包括下载MySQL8、安装、配置、停止旧服务、启动新服务以及... 目录问题描述解决方案第一步第二步第三步第四步第五步总结问题描述最近想开发一个新应用,想使用mysq

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

解决systemctl reload nginx重启Nginx服务报错:Job for nginx.service invalid问题

《解决systemctlreloadnginx重启Nginx服务报错:Jobfornginx.serviceinvalid问题》文章描述了通过`systemctlstatusnginx.se... 目录systemctl reload nginx重启Nginx服务报错:Job for nginx.javas

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

Mysql DATETIME 毫秒坑的解决

《MysqlDATETIME毫秒坑的解决》本文主要介绍了MysqlDATETIME毫秒坑的解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 今天写代码突发一个诡异的 bug,代码逻辑大概如下。1. 新增退款单记录boolean save = s

vue解决子组件样式覆盖问题scoped deep

《vue解决子组件样式覆盖问题scopeddeep》文章主要介绍了在Vue项目中处理全局样式和局部样式的方法,包括使用scoped属性和深度选择器(/deep/)来覆盖子组件的样式,作者建议所有组件... 目录前言scoped分析deep分析使用总结所有组件必须加scoped父组件覆盖子组件使用deep前言