群体优化算法---电磁共振优化算法(EROA)介绍包含示例滤波器设计

2024-06-24 07:20

本文主要是介绍群体优化算法---电磁共振优化算法(EROA)介绍包含示例滤波器设计,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

介绍

电磁共振优化算法(Electromagnetic Resonance Optimization Algorithm, EROA)是一种新型的元启发式优化算法,其灵感来源于电磁共振现象。电磁共振是一种物理现象,当一个系统在特定频率下响应最大时,这个频率被称为共振频率。在优化算法中,共振频率可以用来引导搜索过程,提高优化效率

EROA 算法的基本原理

种群初始化:
在搜索空间内随机生成一定数量的初始解,这些解组成种群。

适应度评估:
计算每个个体的适应度值,以衡量其解的质量。适应度函数根据具体问题进行定义。

共振频率计算:
根据个体的适应度值,计算其共振频率。共振频率通常与个体的适应度值成反比,适应度值越高,共振频率越低。

位置更新:
通过模拟波的干涉和反射效应更新每个个体的位置。波效应使个体向最佳解靠近,而反射效应防止个体超出搜索空间边界。

局部搜索:
在每次迭代中,对当前最佳解进行局部搜索,以提高解的精度。局部搜索可以采用小范围的随机扰动来实现。

更新最佳解:
在每次迭代结束时,更新全局最佳解。如果当前种群中存在比之前更优的解,则更新全局最佳解。

迭代终止:
设定最大迭代次数或适应度阈值,当满足终止条件时,算法结束,输出最佳解

EROA 算法的优点

全局搜索能力:
EROA 能够有效地在全局范围内搜索最优解,避免陷入局部最优。

收敛速度快:
通过模拟电磁共振现象,EROA 在解决复杂优化问题时具有较快的收敛速度。

适应性强:
EROA 可应用于多种类型的优化问题,如函数优化、组合优化、工程优化等

适用领域

工程优化:
结构优化、参数优化、调度问题等。

信号处理:
滤波器设计、信号恢复等。

机器学习:
神经网络训练、特征选择等。

其他复杂优化问题:
如物流优化、路径规划等

本文示例

我们将使用EROA进行滤波器设计

核心代码

EROA_Filter_Design_Optimized.m

function best_solution = EROA_Filter_Design_Optimized(N, T_max, dim, lower_bound, upper_bound, fitness_func)% 初始化种群population = repmat(lower_bound, N, 1) + repmat((upper_bound - lower_bound), N, 1) .* rand(N, dim);fitness = zeros(N, 1);for idx = 1:Nfitness(idx) = fitness_func(population(idx, :));end[best_fitness, best_idx] = min(fitness);best_solution = population(best_idx, :);% 主循环for t = 1:T_maxfor i = 1:Nresonance_freq = 1 / (1 + exp(-fitness(i)));for d = 1:dimwave_effect = (rand - 0.5) * 2 * resonance_freq;new_position = population(i, d) + wave_effect;if new_position < lower_bound(d)new_position = lower_bound(d) + (lower_bound(d) - new_position);endpopulation(i, d) = new_position;endfitness(i) = fitness_func(population(i, :));end% 局部搜索for d = 1:dimlocal_search = best_solution;local_search(d) = local_search(d) + (rand - 0.5) * 0.1;if local_search(d) < lower_bound(d)local_search(d) = lower_bound(d);endlocal_fitness = fitness_func(local_search);if local_fitness < best_fitnessbest_fitness = local_fitness;best_solution = local_search;endend% 更新最佳解[current_best_fitness, best_idx] = min(fitness);if current_best_fitness < best_fitnessbest_fitness = current_best_fitness;best_solution = population(best_idx, :);endend
end

Run_EROA_Filter_Design.m

function Run_EROA_Filter_Design
% 使用改进后的适应度函数和算法进行滤波器设计
dim = 80;
lower_bound = -0.1 * ones(1, dim);
upper_bound = 0.1 * ones(1, dim);
N = 600;
T_max = 3000;fitness_func = @(coeff) filter_design_fitness_optimized(coeff);best_solution = EROA_Filter_Design_Optimized(N, T_max, dim, lower_bound, upper_bound, fitness_func);
disp('Best solution found:');
disp(best_solution);
disp('Fitness of best solution:');
disp(fitness_func(best_solution));plot_filter_response(best_solution);% 改进后的适应度函数
function cost = filter_design_fitness_optimized(coeff)fs = 1000; % 采样频率n = 512; % 频率点数量f = linspace(0, fs/2, n);n_quarter = floor(n/4);desired = [ones(1, n_quarter), zeros(1, n - n_quarter)];% 实际频率响应[h, w] = freqz(coeff, 1, n, fs);h = abs(h);cost = mse_cost + passband_penalty + stopband_penalty;
end% 绘制滤波器的频率响应
function plot_filter_response(coeff)fs = 1000; % 采样频率n = 512; % 频率点数量f = linspace(0, fs/2, n);n_quarter = floor(n/4);desired = [ones(1, n_quarter), zeros(1, n - n_quarter)];% 实际频率响应[h, w] = freqz(coeff, 1, n, fs);h = abs(h);% 绘制频率响应figure;plot(f, desired, 'r--', 'LineWidth', 2); hold on;plot(w, h, 'b-', 'LineWidth', 2);xlabel('Frequency (Hz)');ylabel('Magnitude');legend('Desired Response', 'Actual Response');title('Frequency Response of the Designed Filter');grid on;
end
end

说明

函数定义和参数说明:

function best_solution = EROA_Filter_Design_Optimized(N, T_max, dim, lower_bound, upper_bound, fitness_func)

该函数通过共振优化算法(EROA)来设计滤波器。参数解释如下:
N: 种群数量
T_max: 最大迭代次数
dim: 问题维度(滤波器系数数量)
lower_bound: 搜索空间的下界
upper_bound: 搜索空间的上界
fitness_func: 用于评估解的适应度函数

初始化种群:

population = repmat(lower_bound, N, 1) + repmat((upper_bound - lower_bound), N, 1) .* rand(N, dim);
fitness = zeros(N, 1); % 预分配适应度数组

初始化一个大小为 N x dim 的种群,每个个体的值在 lower_bound 和 upper_bound 之间随机生成。

计算初始种群的适应度:

for idx = 1:Nfitness(idx) = fitness_func(population(idx, :));
end
[best_fitness, best_idx] = min(fitness);
best_solution = population(best_idx, :);

对初始种群中的每个个体计算其适应度,并找到适应度最好的个体作为初始的最佳解。

主要迭代循环:

for t = 1:T_maxfor i = 1:N% 更新共振频率resonance_freq = 1 / (1 + exp(-fitness(i)));% 使用波干涉和反射更新位置for d = 1:dimwave_effect = (rand - 0.5) * 2 * resonance_freq;new_position = population(i, d) + wave_effect;% 边界反射if new_position < lower_bound(d)new_position = lower_bound(d) + (lower_bound(d) - new_position);elseif new_position > upper_bound(d)new_position = upper_bound(d) - (new_position - upper_bound(d));endpopulation(i, d) = new_position;endfitness(i) = fitness_func(population(i, :));end% 更新最佳解[current_best_fitness, best_idx] = min(fitness);if current_best_fitness < best_fitnessbest_fitness = current_best_fitness;best_solution = population(best_idx, :);end
end

在每次迭代中,根据当前个体的适应度更新其位置,并根据新位置计算适应度。保持和更新当前的最佳解。

适应度函数:

function cost = filter_design_fitness_optimized(coeff)

该适应度函数设计了一个低通滤波器,并计算滤波器的频率响应与期望响应之间的加权均方误差。较大权重用于阻带,以确保阻带的良好性能,同时增加惩罚项以限制通带和阻带中的偏差。

频率响应绘图函数:

function plot_filter_response(coeff)

该函数绘制所设计滤波器的频率响应,并与期望的频率响应进行对比。

效果

在这里插入图片描述

完整代码获取

微信扫一扫,发送“滤波器设计”即可获取完整代码
在这里插入图片描述

这篇关于群体优化算法---电磁共振优化算法(EROA)介绍包含示例滤波器设计的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1089515

相关文章

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

Python中Markdown库的使用示例详解

《Python中Markdown库的使用示例详解》Markdown库是一个用于处理Markdown文本的Python工具,这篇文章主要为大家详细介绍了Markdown库的具体使用,感兴趣的... 目录一、背景二、什么是 Markdown 库三、如何安装这个库四、库函数使用方法1. markdown.mark

Deepseek使用指南与提问优化策略方式

《Deepseek使用指南与提问优化策略方式》本文介绍了DeepSeek语义搜索引擎的核心功能、集成方法及优化提问策略,通过自然语言处理和机器学习提供精准搜索结果,适用于智能客服、知识库检索等领域... 目录序言1. DeepSeek 概述2. DeepSeek 的集成与使用2.1 DeepSeek API

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

css渐变色背景|<gradient示例详解

《css渐变色背景|<gradient示例详解》CSS渐变是一种从一种颜色平滑过渡到另一种颜色的效果,可以作为元素的背景,它包括线性渐变、径向渐变和锥形渐变,本文介绍css渐变色背景|<gradien... 使用渐变色作为背景可以直接将渐China编程变色用作元素的背景,可以看做是一种特殊的背景图片。(是作为背

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav

Java实现状态模式的示例代码

《Java实现状态模式的示例代码》状态模式是一种行为型设计模式,允许对象根据其内部状态改变行为,本文主要介绍了Java实现状态模式的示例代码,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来... 目录一、简介1、定义2、状态模式的结构二、Java实现案例1、电灯开关状态案例2、番茄工作法状态案例

Tomcat高效部署与性能优化方式

《Tomcat高效部署与性能优化方式》本文介绍了如何高效部署Tomcat并进行性能优化,以确保Web应用的稳定运行和高效响应,高效部署包括环境准备、安装Tomcat、配置Tomcat、部署应用和启动T... 目录Tomcat高效部署与性能优化一、引言二、Tomcat高效部署三、Tomcat性能优化总结Tom

nginx-rtmp-module模块实现视频点播的示例代码

《nginx-rtmp-module模块实现视频点播的示例代码》本文主要介绍了nginx-rtmp-module模块实现视频点播,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录预置条件Nginx点播基本配置点播远程文件指定多个播放位置参考预置条件配置点播服务器 192.