概率之常用概率分布

2024-06-24 02:32
文章标签 常用 概率 概率分布

本文主要是介绍概率之常用概率分布,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. Bernoulli分布

单个二值随机变量的分布。它由单个参数\small \phi \in [0,1]控制,\small \phi给出了随机变量等于1的概率。它具有如下的一些性质。

\small P(x=1)=\phi

\small P(x=0)=1-\phi

\small P(\mathrm x = x) = \phi ^x (1 - \phi)^{1-x}

\small E_x[x] = \phi

\small Var_x(x) = \phi (1 - \phi)

2. Multinoulli分布

Multinoulli分布(multinoulli distribution)或者范畴分布(categorical distribution)是指在具有k个不同状态的单个离散型随机变量上的分布,其中k是一个有限值。

3. 高斯分布

高斯分布(Gaussian distribution)也称为正态分布(normal distribution):

\small \mathcal N (x; \mu, \sigma ^2) = \sqrt {\frac{1}{2\pi \sigma ^2}} exp (-\frac{1}{2 \sigma ^2} (x - \mu) ^ 2)

正态分布由两个参数控制,\small \mu \in \mathbb R, \sigma \in (0, \infty)。参数\small \mu给出了中心峰值的坐标即期望值E[x],分布的标准差用\small \sigma表示,方差用\small \sigma ^2表示。为表示方便,令\small \beta = \frac{1}{\sigma ^2}, \beta \in (0, \infty),上式可写成如下形式:

\small \mathcal N(x; \mu, \beta ^{-1}) = \frac{\beta}{2\pi} exp (-\frac{1}{2} \beta(x - \mu) ^ 2)

当我们缺乏关于某个实数上分布的先验知识而不知道该选择怎样的形式时,正态分布是默认的比较好的选择。原因有如下两个:

1. 我们想要建模的很多分布的真实情况是比较接近正态分布的。

2. 在具有相同方差的所有可能的概率分布中,正态分布在实数上具有最大的不确定性。

正态分布可以推广到\small \mathbb R^n空间,这种被称为多维正态分布(multivariate normal distribution)。它的参数是一个正定对称矩阵\small \Sigma:

\small \mathcal N(x; \mu, \Sigma) = \sqrt{\frac{1}{(2\pi)^n det(\Sigma))}} exp (-\frac{1}{2}(x - \mu)^{\top} \Sigma ^ {-1} (x - \mu))

参数\small \mu仍然表示的是分布的均值,只不过不再是标量而是一个向量值。参数\small \Sigma给出了分布的协方差矩阵。令\small \beta = \Sigma ^ {-1}

\small \mathcal N(x; \mu, \beta ^ {-1}) = \sqrt{\frac{det(\beta)}{(2\pi)^n}} exp (-\frac{1}{2}(x - \mu)^{\top} \beta (x - \mu))

4. 指数分布和Laplace分布

指数分布(exponential distribution):

\small \begin{center} p(x;\lambda) = \lambda1_{x \geq 0} exp(- \lambda x) \end{center}

指数分布用指示函数(indicator function) \small 1_{x \geq 0} 来使得当x取负值时的概率为零。

一个联系紧密的概率分布是Laplace分布,它允许我们在任意一点\small \mu处设置概率质量的峰值:

\small Laplace(x; \mu, \gamma) = \frac{1}{2 \gamma} exp (- \frac{|x - \mu|}{\gamma})

5. Dirac分布和经验分布

在一些情况下,我们希望概率分布中的所有质量都集中在一个点上。这可以通过Dirac delta函数(Dirac delta function)定义概率密度函数来实现:

\small p(x) = \delta(x - \mu)

Dirac分布经常作为经验分布(empirical distribution)的一个组成部分出现:

\small \hat{p}(x) = \frac{1}{m} \sum_{i=1}^{m} \delta(x - x^{(i)})

 

 

 

 

 

 

 

 

 

 

 

 

这篇关于概率之常用概率分布的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088940

相关文章

Java 字符数组转字符串的常用方法

《Java字符数组转字符串的常用方法》文章总结了在Java中将字符数组转换为字符串的几种常用方法,包括使用String构造函数、String.valueOf()方法、StringBuilder以及A... 目录1. 使用String构造函数1.1 基本转换方法1.2 注意事项2. 使用String.valu

VUE动态绑定class类的三种常用方式及适用场景详解

《VUE动态绑定class类的三种常用方式及适用场景详解》文章介绍了在实际开发中动态绑定class的三种常见情况及其解决方案,包括根据不同的返回值渲染不同的class样式、给模块添加基础样式以及根据设... 目录前言1.动态选择class样式(对象添加:情景一)2.动态添加一个class样式(字符串添加:情

Java 枚举的常用技巧汇总

《Java枚举的常用技巧汇总》在Java中,枚举类型是一种特殊的数据类型,允许定义一组固定的常量,默认情况下,toString方法返回枚举常量的名称,本文提供了一个完整的代码示例,展示了如何在Jav... 目录一、枚举的基本概念1. 什么是枚举?2. 基本枚举示例3. 枚举的优势二、枚举的高级用法1. 枚举

IDEA常用插件之代码扫描SonarLint详解

《IDEA常用插件之代码扫描SonarLint详解》SonarLint是一款用于代码扫描的插件,可以帮助查找隐藏的bug,下载并安装插件后,右键点击项目并选择“Analyze”、“Analyzewit... 目录SonajavascriptrLint 查找隐藏的bug下载安装插件扫描代码查看结果总结Sona

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

JS常用组件收集

收集了一些平时遇到的前端比较优秀的组件,方便以后开发的时候查找!!! 函数工具: Lodash 页面固定: stickUp、jQuery.Pin 轮播: unslider、swiper 开关: switch 复选框: icheck 气泡: grumble 隐藏元素: Headroom

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

常用的jdk下载地址

jdk下载地址 安装方式可以看之前的博客: mac安装jdk oracle 版本:https://www.oracle.com/java/technologies/downloads/ Eclipse Temurin版本:https://adoptium.net/zh-CN/temurin/releases/ 阿里版本: github:https://github.com/

hdu4865(概率DP)

题意:已知前一天和今天的天气概率,某天的天气概率和叶子的潮湿程度的概率,n天叶子的湿度,求n天最有可能的天气情况。 思路:概率DP,dp[i][j]表示第i天天气为j的概率,状态转移如下:dp[i][j] = max(dp[i][j, dp[i-1][k]*table2[k][j]*table1[j][col] )  代码如下: #include <stdio.h>#include

30常用 Maven 命令

Maven 是一个强大的项目管理和构建工具,它广泛用于 Java 项目的依赖管理、构建流程和插件集成。Maven 的命令行工具提供了大量的命令来帮助开发人员管理项目的生命周期、依赖和插件。以下是 常用 Maven 命令的使用场景及其详细解释。 1. mvn clean 使用场景:清理项目的生成目录,通常用于删除项目中自动生成的文件(如 target/ 目录)。共性规律:清理操作