PINN解偏微分方程实例4

2024-06-24 00:52

本文主要是介绍PINN解偏微分方程实例4,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

PINN解偏微分方程实例4

  • 一、正问题
    • 1. Diffusion equation
    • 2. Burgers’ equation
    • 3. Allen–Cahn equation
    • 4. Wave equation
  • 二、反问题
    • 1. Burgers’ equation
    • 3. 部分代码示例

  本文使用 PINN解偏微分方程实例1中展示的代码求解了以四个具体的偏微分方程,包括Diffusion,Burgers, Allen–Cahn和Wave方程,另外重新写了一个求解反问题的代码,以burger方程为例。

一、正问题

1. Diffusion equation

一维扩散方程:
∂ u ∂ t = ∂ 2 u ∂ x 2 + e − t ( − sin ⁡ ( π x ) + π 2 sin ⁡ ( π x ) ) , x ∈ [ − 1 , 1 ] , t ∈ [ 0 , 1 ] u ( x , 0 ) = sin ⁡ ( π x ) u ( − 1 , t ) = u ( 1 , t ) = 0 \begin{array}{l} \frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+e^{-t}\left(-\sin (\pi x)+\pi^{2} \sin (\pi x)\right), \quad x \in[-1,1], t \in[0,1] \\ u(x, 0)=\sin (\pi x) \\ u(-1, t)=u(1, t)=0 \end{array} tu=x22u+et(sin(πx)+π2sin(πx)),x[1,1],t[0,1]u(x,0)=sin(πx)u(1,t)=u(1,t)=0
其中 u u u 是扩散物质的浓度。精确解是 u ( x , t ) = s i n ( π x ) e − t u(x,t)=sin(\pi x)e^{-t} u(x,t)=sin(πx)et 表示。

请添加图片描述

2. Burgers’ equation

Burgers方程的定义为:
∂ u ∂ t + u ∂ u ∂ x = v ∂ 2 u ∂ x 2 , x ∈ [ − 1 , 1 ] , t ∈ [ 0 , 1 ] , u ( x , 0 ) = − sin ⁡ ( π x ) , u ( − 1 , t ) = u ( 1 , t ) = 0 , \begin{array}{l} \frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=v \frac{\partial^{2} u}{\partial x^{2}}, \quad x \in[-1,1], t \in[0,1], \\ u(x, 0)=-\sin (\pi x), \\ u(-1, t)=u(1, t)=0, \end{array} tu+uxu=vx22u,x[1,1],t[0,1],u(x,0)=sin(πx),u(1,t)=u(1,t)=0,
其中, u u u 为流速, ν ν ν 为流体的粘度。在本文中, ν ν ν 设为 0.01 / π 0.01/\pi 0.01/π
请添加图片描述

3. Allen–Cahn equation

Allen–Cahn方程的形式如下:
∂ u ∂ t = D ∂ 2 u ∂ x 2 + 5 ( u − u 3 ) , x ∈ [ − 1 , 1 ] , t ∈ [ 0 , 1 ] , u ( x , 0 ) = x 2 cos ⁡ ( π x ) , u ( − 1 , t ) = u ( 1 , t ) = − 1 , \begin{array}{l} \frac{\partial u}{\partial t}=D \frac{\partial^{2} u}{\partial x^{2}}+5\left(u-u^{3}\right), \quad x \in[-1,1], t \in[0,1], \\ u(x, 0)=x^{2} \cos (\pi x), \\ u(-1, t)=u(1, t)=-1, \end{array} tu=Dx22u+5(uu3),x[1,1],t[0,1],u(x,0)=x2cos(πx),u(1,t)=u(1,t)=1,
其中,扩散系数 D = 0.001 D=0.001 D=0.001 .

请添加图片描述

4. Wave equation

一维波动方程如下:
∂ 2 u ∂ t 2 − 4 ∂ 2 u ∂ x 2 = 0 , x ∈ [ 0 , 1 ] , t ∈ [ 0 , 1 ] , u ( 0 , t ) = u ( 1 , t ) = 0 , t ∈ [ 0 , 1 ] , u ( x , 0 ) = sin ⁡ ( π x ) + 1 2 sin ⁡ ( 4 π x ) , x ∈ [ 0 , 1 ] , ∂ u ∂ t ( x , 0 ) = 0 , x ∈ [ 0 , 1 ] , \begin{array}{l} \frac{\partial^{2} u}{\partial t^{2}}-4 \frac{\partial^{2} u}{\partial x^{2}}=0, \quad x \in[0,1], t \in[0,1], \\ u(0, t)=u(1, t)=0, \quad t \in[0,1], \\ u(x, 0)=\sin (\pi x)+\frac{1}{2} \sin (4 \pi x), \quad x \in[0,1], \\ \frac{\partial u}{\partial t}(x, 0)=0, \quad x \in[0,1], \end{array} t22u4x22u=0,x[0,1],t[0,1],u(0,t)=u(1,t)=0,t[0,1],u(x,0)=sin(πx)+21sin(4πx),x[0,1],tu(x,0)=0,x[0,1],
精确解为:
u ( x , t ) = sin ⁡ ( π x ) cos ⁡ ( 2 π t ) + 1 2 sin ⁡ ( 4 π x ) cos ⁡ ( 8 π t ) . u(x, t)=\sin (\pi x) \cos (2 \pi t)+\frac{1}{2} \sin (4 \pi x) \cos (8 \pi t) . u(x,t)=sin(πx)cos(2πt)+21sin(4πx)cos(8πt).

二、反问题

1. Burgers’ equation

Burgers方程的定义为:
∂ u ∂ t + u ∂ u ∂ x = v ∂ 2 u ∂ x 2 , x ∈ [ − 1 , 1 ] , t ∈ [ 0 , 1 ] , u ( x , 0 ) = − sin ⁡ ( π x ) , u ( − 1 , t ) = u ( 1 , t ) = 0 , \begin{array}{l} \frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=v \frac{\partial^{2} u}{\partial x^{2}}, \quad x \in[-1,1], t \in[0,1], \\ u(x, 0)=-\sin (\pi x), \\ u(-1, t)=u(1, t)=0, \end{array} tu+uxu=vx22u,x[1,1],t[0,1],u(x,0)=sin(πx),u(1,t)=u(1,t)=0,
其中, u u u 为流速, ν ν ν 为流体的粘度。
  这里假设 v v v 未知,我们同时求解方程的解和v的值。

在这里插入图片描述

3. 部分代码示例

import torch
import numpy as np
import matplotlib.pyplot as pltsin = torch.sin
cos = torch.cos
exp = torch.exp
pi = torch.piepochs = 50000    # 训练代数,要为1000的整数倍
h = 100    # 画图网格密度
N = 30    # 内点配置点数
N1 = 10    # 边界点配置点数
N2 = 5000    # 数据点# error
L2_error = []
L2_error_data = []
L2_error_eq = []
# Training
u = MLP()
opt = torch.optim.Adam(params=u.parameters())
xt, u_real = test_data(x_inf=-1, x_sup=1, t_inf=0, t_sup=1, h=h)
print("**************** equation+data ********************")
for i in range(epochs):opt.zero_grad()l = l_interior(u) \+ l_down(u) \+ l_left(u) \+ l_right(u) \+ l_data(u)l.backward()opt.step()if (i+1) % 1000 == 0 or i == 0:u_pred = u(xt)error = l2_relative_error(u_real, u_pred.detach().numpy())L2_error.append(error)print("L2相对误差: ", error)u1 = MLP()
opt = torch.optim.Adam(params=u1.parameters())
print("**************** data ********************")
for i in range(epochs):opt.zero_grad()l = l_data(u1)l.backward()opt.step()if (i+1) % 1000 == 0 or i == 0:u_pred = u1(xt)error = l2_relative_error(u_real, u_pred.detach().numpy())L2_error_data.append(error)print("L2相对误差: ", error)u2 = MLP()
opt = torch.optim.Adam(params=u2.parameters())
print("**************** equation ********************")
for i in range(epochs):opt.zero_grad()l = l_interior(u2) \+ l_down(u2) \+ l_left(u2) \+ l_right(u2)l.backward()opt.step()if (i+1) % 1000 == 0 or i == 0:u_pred = u2(xt)error = l2_relative_error(u_real, u_pred.detach().numpy())L2_error_eq.append(error)print("L2相对误差: ", error)print("********************************")
print("PINN相对误差为: ", L2_error[-1])
print("equation相对误差为: ", L2_error_eq[-1])
print("data相对误差为: ", L2_error_data[-1])
print("********************************")x = range(int(epochs / 1000 + 1))
plt.plot(x, L2_error, c='red', label='pinn')
plt.plot(x, L2_error_data, c='blue', label='only data')
plt.plot(x, L2_error_eq, c='yellow', label='only equation')
plt.scatter(x, L2_error, c='red')
plt.scatter(x, L2_error_data, c='blue')
plt.scatter(x, L2_error_eq, c='yellow')
plt.yscale('log')
plt.legend()
plt.show()

完整代码目录如下:
在这里插入图片描述

这篇关于PINN解偏微分方程实例4的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088743

相关文章

Java操作ElasticSearch的实例详解

《Java操作ElasticSearch的实例详解》Elasticsearch是一个分布式的搜索和分析引擎,广泛用于全文搜索、日志分析等场景,本文将介绍如何在Java应用中使用Elastics... 目录简介环境准备1. 安装 Elasticsearch2. 添加依赖连接 Elasticsearch1. 创

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

Oracle Expdp按条件导出指定表数据的方法实例

《OracleExpdp按条件导出指定表数据的方法实例》:本文主要介绍Oracle的expdp数据泵方式导出特定机构和时间范围的数据,并通过parfile文件进行条件限制和配置,文中通过代码介绍... 目录1.场景描述 2.方案分析3.实验验证 3.1 parfile文件3.2 expdp命令导出4.总结

MySQL的索引失效的原因实例及解决方案

《MySQL的索引失效的原因实例及解决方案》这篇文章主要讨论了MySQL索引失效的常见原因及其解决方案,它涵盖了数据类型不匹配、隐式转换、函数或表达式、范围查询、LIKE查询、OR条件、全表扫描、索引... 目录1. 数据类型不匹配2. 隐式转换3. 函数或表达式4. 范围查询之后的列5. like 查询6

Python开发围棋游戏的实例代码(实现全部功能)

《Python开发围棋游戏的实例代码(实现全部功能)》围棋是一种古老而复杂的策略棋类游戏,起源于中国,已有超过2500年的历史,本文介绍了如何用Python开发一个简单的围棋游戏,实例代码涵盖了游戏的... 目录1. 围棋游戏概述1.1 游戏规则1.2 游戏设计思路2. 环境准备3. 创建棋盘3.1 棋盘类

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

C++操作符重载实例(独立函数)

C++操作符重载实例,我们把坐标值CVector的加法进行重载,计算c3=c1+c2时,也就是计算x3=x1+x2,y3=y1+y2,今天我们以独立函数的方式重载操作符+(加号),以下是C++代码: c1802.cpp源代码: D:\YcjWork\CppTour>vim c1802.cpp #include <iostream>using namespace std;/*** 以独立函数

实例:如何统计当前主机的连接状态和连接数

统计当前主机的连接状态和连接数 在 Linux 中,可使用 ss 命令来查看主机的网络连接状态。以下是统计当前主机连接状态和连接主机数量的具体操作。 1. 统计当前主机的连接状态 使用 ss 命令结合 grep、cut、sort 和 uniq 命令来统计当前主机的 TCP 连接状态。 ss -nta | grep -v '^State' | cut -d " " -f 1 | sort |

Java Websocket实例【服务端与客户端实现全双工通讯】

Java Websocket实例【服务端与客户端实现全双工通讯】 现很多网站为了实现即时通讯,所用的技术都是轮询(polling)。轮询是在特定的的时间间隔(如每1秒),由浏览器对服务器发 出HTTP request,然后由服务器返回最新的数据给客服端的浏览器。这种传统的HTTP request 的模式带来很明显的缺点 – 浏 览器需要不断的向服务器发出请求,然而HTTP

828华为云征文|华为云Flexus X实例docker部署rancher并构建k8s集群

828华为云征文|华为云Flexus X实例docker部署rancher并构建k8s集群 华为云最近正在举办828 B2B企业节,Flexus X实例的促销力度非常大,特别适合那些对算力性能有高要求的小伙伴。如果你有自建MySQL、Redis、Nginx等服务的需求,一定不要错过这个机会。赶紧去看看吧! 什么是华为云Flexus X实例 华为云Flexus X实例云服务是新一代开箱即用、体