PINN解偏微分方程实例4

2024-06-24 00:52

本文主要是介绍PINN解偏微分方程实例4,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

PINN解偏微分方程实例4

  • 一、正问题
    • 1. Diffusion equation
    • 2. Burgers’ equation
    • 3. Allen–Cahn equation
    • 4. Wave equation
  • 二、反问题
    • 1. Burgers’ equation
    • 3. 部分代码示例

  本文使用 PINN解偏微分方程实例1中展示的代码求解了以四个具体的偏微分方程,包括Diffusion,Burgers, Allen–Cahn和Wave方程,另外重新写了一个求解反问题的代码,以burger方程为例。

一、正问题

1. Diffusion equation

一维扩散方程:
∂ u ∂ t = ∂ 2 u ∂ x 2 + e − t ( − sin ⁡ ( π x ) + π 2 sin ⁡ ( π x ) ) , x ∈ [ − 1 , 1 ] , t ∈ [ 0 , 1 ] u ( x , 0 ) = sin ⁡ ( π x ) u ( − 1 , t ) = u ( 1 , t ) = 0 \begin{array}{l} \frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+e^{-t}\left(-\sin (\pi x)+\pi^{2} \sin (\pi x)\right), \quad x \in[-1,1], t \in[0,1] \\ u(x, 0)=\sin (\pi x) \\ u(-1, t)=u(1, t)=0 \end{array} tu=x22u+et(sin(πx)+π2sin(πx)),x[1,1],t[0,1]u(x,0)=sin(πx)u(1,t)=u(1,t)=0
其中 u u u 是扩散物质的浓度。精确解是 u ( x , t ) = s i n ( π x ) e − t u(x,t)=sin(\pi x)e^{-t} u(x,t)=sin(πx)et 表示。

请添加图片描述

2. Burgers’ equation

Burgers方程的定义为:
∂ u ∂ t + u ∂ u ∂ x = v ∂ 2 u ∂ x 2 , x ∈ [ − 1 , 1 ] , t ∈ [ 0 , 1 ] , u ( x , 0 ) = − sin ⁡ ( π x ) , u ( − 1 , t ) = u ( 1 , t ) = 0 , \begin{array}{l} \frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=v \frac{\partial^{2} u}{\partial x^{2}}, \quad x \in[-1,1], t \in[0,1], \\ u(x, 0)=-\sin (\pi x), \\ u(-1, t)=u(1, t)=0, \end{array} tu+uxu=vx22u,x[1,1],t[0,1],u(x,0)=sin(πx),u(1,t)=u(1,t)=0,
其中, u u u 为流速, ν ν ν 为流体的粘度。在本文中, ν ν ν 设为 0.01 / π 0.01/\pi 0.01/π
请添加图片描述

3. Allen–Cahn equation

Allen–Cahn方程的形式如下:
∂ u ∂ t = D ∂ 2 u ∂ x 2 + 5 ( u − u 3 ) , x ∈ [ − 1 , 1 ] , t ∈ [ 0 , 1 ] , u ( x , 0 ) = x 2 cos ⁡ ( π x ) , u ( − 1 , t ) = u ( 1 , t ) = − 1 , \begin{array}{l} \frac{\partial u}{\partial t}=D \frac{\partial^{2} u}{\partial x^{2}}+5\left(u-u^{3}\right), \quad x \in[-1,1], t \in[0,1], \\ u(x, 0)=x^{2} \cos (\pi x), \\ u(-1, t)=u(1, t)=-1, \end{array} tu=Dx22u+5(uu3),x[1,1],t[0,1],u(x,0)=x2cos(πx),u(1,t)=u(1,t)=1,
其中,扩散系数 D = 0.001 D=0.001 D=0.001 .

请添加图片描述

4. Wave equation

一维波动方程如下:
∂ 2 u ∂ t 2 − 4 ∂ 2 u ∂ x 2 = 0 , x ∈ [ 0 , 1 ] , t ∈ [ 0 , 1 ] , u ( 0 , t ) = u ( 1 , t ) = 0 , t ∈ [ 0 , 1 ] , u ( x , 0 ) = sin ⁡ ( π x ) + 1 2 sin ⁡ ( 4 π x ) , x ∈ [ 0 , 1 ] , ∂ u ∂ t ( x , 0 ) = 0 , x ∈ [ 0 , 1 ] , \begin{array}{l} \frac{\partial^{2} u}{\partial t^{2}}-4 \frac{\partial^{2} u}{\partial x^{2}}=0, \quad x \in[0,1], t \in[0,1], \\ u(0, t)=u(1, t)=0, \quad t \in[0,1], \\ u(x, 0)=\sin (\pi x)+\frac{1}{2} \sin (4 \pi x), \quad x \in[0,1], \\ \frac{\partial u}{\partial t}(x, 0)=0, \quad x \in[0,1], \end{array} t22u4x22u=0,x[0,1],t[0,1],u(0,t)=u(1,t)=0,t[0,1],u(x,0)=sin(πx)+21sin(4πx),x[0,1],tu(x,0)=0,x[0,1],
精确解为:
u ( x , t ) = sin ⁡ ( π x ) cos ⁡ ( 2 π t ) + 1 2 sin ⁡ ( 4 π x ) cos ⁡ ( 8 π t ) . u(x, t)=\sin (\pi x) \cos (2 \pi t)+\frac{1}{2} \sin (4 \pi x) \cos (8 \pi t) . u(x,t)=sin(πx)cos(2πt)+21sin(4πx)cos(8πt).

二、反问题

1. Burgers’ equation

Burgers方程的定义为:
∂ u ∂ t + u ∂ u ∂ x = v ∂ 2 u ∂ x 2 , x ∈ [ − 1 , 1 ] , t ∈ [ 0 , 1 ] , u ( x , 0 ) = − sin ⁡ ( π x ) , u ( − 1 , t ) = u ( 1 , t ) = 0 , \begin{array}{l} \frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=v \frac{\partial^{2} u}{\partial x^{2}}, \quad x \in[-1,1], t \in[0,1], \\ u(x, 0)=-\sin (\pi x), \\ u(-1, t)=u(1, t)=0, \end{array} tu+uxu=vx22u,x[1,1],t[0,1],u(x,0)=sin(πx),u(1,t)=u(1,t)=0,
其中, u u u 为流速, ν ν ν 为流体的粘度。
  这里假设 v v v 未知,我们同时求解方程的解和v的值。

在这里插入图片描述

3. 部分代码示例

import torch
import numpy as np
import matplotlib.pyplot as pltsin = torch.sin
cos = torch.cos
exp = torch.exp
pi = torch.piepochs = 50000    # 训练代数,要为1000的整数倍
h = 100    # 画图网格密度
N = 30    # 内点配置点数
N1 = 10    # 边界点配置点数
N2 = 5000    # 数据点# error
L2_error = []
L2_error_data = []
L2_error_eq = []
# Training
u = MLP()
opt = torch.optim.Adam(params=u.parameters())
xt, u_real = test_data(x_inf=-1, x_sup=1, t_inf=0, t_sup=1, h=h)
print("**************** equation+data ********************")
for i in range(epochs):opt.zero_grad()l = l_interior(u) \+ l_down(u) \+ l_left(u) \+ l_right(u) \+ l_data(u)l.backward()opt.step()if (i+1) % 1000 == 0 or i == 0:u_pred = u(xt)error = l2_relative_error(u_real, u_pred.detach().numpy())L2_error.append(error)print("L2相对误差: ", error)u1 = MLP()
opt = torch.optim.Adam(params=u1.parameters())
print("**************** data ********************")
for i in range(epochs):opt.zero_grad()l = l_data(u1)l.backward()opt.step()if (i+1) % 1000 == 0 or i == 0:u_pred = u1(xt)error = l2_relative_error(u_real, u_pred.detach().numpy())L2_error_data.append(error)print("L2相对误差: ", error)u2 = MLP()
opt = torch.optim.Adam(params=u2.parameters())
print("**************** equation ********************")
for i in range(epochs):opt.zero_grad()l = l_interior(u2) \+ l_down(u2) \+ l_left(u2) \+ l_right(u2)l.backward()opt.step()if (i+1) % 1000 == 0 or i == 0:u_pred = u2(xt)error = l2_relative_error(u_real, u_pred.detach().numpy())L2_error_eq.append(error)print("L2相对误差: ", error)print("********************************")
print("PINN相对误差为: ", L2_error[-1])
print("equation相对误差为: ", L2_error_eq[-1])
print("data相对误差为: ", L2_error_data[-1])
print("********************************")x = range(int(epochs / 1000 + 1))
plt.plot(x, L2_error, c='red', label='pinn')
plt.plot(x, L2_error_data, c='blue', label='only data')
plt.plot(x, L2_error_eq, c='yellow', label='only equation')
plt.scatter(x, L2_error, c='red')
plt.scatter(x, L2_error_data, c='blue')
plt.scatter(x, L2_error_eq, c='yellow')
plt.yscale('log')
plt.legend()
plt.show()

完整代码目录如下:
在这里插入图片描述

这篇关于PINN解偏微分方程实例4的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088743

相关文章

swiper实例

大家好,我是燐子,今天给大家带来swiper实例   微信小程序中的 swiper 组件是一种用于创建滑动视图的容器组件,常用于实现图片轮播、广告展示等效果。它通过一系列的子组件 swiper-item 来定义滑动视图的每一个页面。 基本用法   以下是一个简单的 swiper 示例代码:   WXML(页面结构) <swiper autoplay="true" interval="3

Java面试题:通过实例说明内连接、左外连接和右外连接的区别

在 SQL 中,连接(JOIN)用于在多个表之间组合行。最常用的连接类型是内连接(INNER JOIN)、左外连接(LEFT OUTER JOIN)和右外连接(RIGHT OUTER JOIN)。它们的主要区别在于它们如何处理表之间的匹配和不匹配行。下面是每种连接的详细说明和示例。 表示例 假设有两个表:Customers 和 Orders。 Customers CustomerIDCus

如何实现一台机器上运行多个MySQL实例?

在一台机器上一个MySQL服务器运行多个MySQL实例有什么好处?这里我先入为主给大家介绍这样做至少存在两个好处(看完这篇文章后理解会更透彻): (1)减轻服务器链接负担 (2)为不同的用户提供不同的mysqld服务器的访问权限以方便这些用户进行自我管理。   下面我介绍具体的实现过程: 一、准备工作     台式机一台、Windows系统、MySQL服务器(我安装的版本是MySQL

Docker Compose--安装Nginx--方法/实例

原文网址:Docker Compose--安装Nginx--方法/实例_IT利刃出鞘的博客-CSDN博客 简介 说明 本文介绍Docker Compose如何安装Nginx。 目录结构 ├── config│   ├── cert│   │   ├── xxx_bundle.pem│   │   └── xxx.key│   ├── conf.d│   └── nginx.co

用 idea 启动多个实例

在学习负载均衡的时候,要模拟多个实例均提供一个服务,我们要如何用 idea 启动多个实例呢?         如下图,我们已经启动了一个 ProductService 服务,现在想再启动两个相同的服务 1. 选中要启动的服务,右键选择 Copy Configuration... 2 在弹出的框中,选择 Modify options -> Add VM option

简单工厂模式--结合实例学习简单工厂模式

在讲解简单工厂模式之前,有必要先了解一下OO的一些原则  1.OCP(开闭原则,Open-Closed Principle):一个软件的实体应当对扩展开放,对修改关闭。也就是说,对于一个已有的软件,如果需要扩展,应当在不需修改      已有代码的基础上进行。   2.DIP(依赖倒转原则,Dependence Inversion Principle):要针对接口编程,不要针对实现编程。简单点说

Struts2(一)---struts2的环境搭建及实例

刚刚接触struts2,有点懵懵懂懂,还是习惯于先写代码,然后慢慢来理解其中的思想。 这篇文章主要内容是strusts的环境搭建及通过一个简单的例子来理解到底是怎么使用struts来简化编程的。 1.项目结构如下如,包括必须的包 2.web.xml <?xml version="1.0" encoding="UTF-8"?><web-app version="3.0" xmlns="

Core Data 网络应用实例

转自:http://www.cocoachina.com/applenews/devnews/2014/0430/8275.html 转自 answer_huang的博客 几乎每一个应用开发者都需要经历的就是将从 web service 获取到的数据转变到 Core Data 中。这篇文章阐述了如何去做。我们在这里讨论的每一个问题在之前的文章中都已经描述过了,并且 Apple 在

ping命令返回结果实例分析

测试在各相关情况下ping命令回复信息。 网络环境搭建如下图所示: 【1】R1、R2、PC1和PC2没有配置,测试ping命令回复         在路由器没有配置端口IP地址和路由,PC没有配置IP地址、子网掩码和网关的情况下,PC2 ping 192.168.1.1。         在PC没有配置IP地址、子网掩码和网关的情况下,PC2 ping 192.16

贝叶斯网络风险系统实例

应用的知识 最优分段 主成分分析 贝叶斯网络 套袋算法 spearman相关系数 数据重命名、连接、聚合等等处理 code #加载所需的包library(data.table)library(dplyr)library(psych)library(caret) library(smbinning) #设置工作路径setwd('D:\\R\\wokingdiretory\