动手学深度学习(Pytorch版)代码实践 -计算机视觉-37微调

2024-06-23 23:12

本文主要是介绍动手学深度学习(Pytorch版)代码实践 -计算机视觉-37微调,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

37微调

在这里插入图片描述

import os
import torch
import torchvision
from torch import nn
import liliPytorch as lp
import matplotlib.pyplot as plt
from d2l import torch as d2l# 获取数据集
d2l.DATA_HUB['hotdog'] = (d2l.DATA_URL + 'hotdog.zip','fba480ffa8aa7e0febbb511d181409f899b9baa5')data_dir = d2l.download_extract('hotdog')
#Downloading ../data\hotdog.zip from http://d2l-data.s3-accelerate.amazonaws.com/hotdog.zip...# 分别读取训练和测试数据集中的所有图像文件
train_imgs = torchvision.datasets.ImageFolder(os.path.join(data_dir, 'train'))
test_imgs = torchvision.datasets.ImageFolder(os.path.join(data_dir, 'test'))
# ImageFolder 会递归地读取指定目录下的所有图像文件。
# print(train_imgs.classes)#一个类名列表 # ['hotdog', 'not-hotdog']
# print(train_imgs.class_to_idx) # 一个字典,类名映射到类索引 # {'hotdog': 0, 'not-hotdog': 1}
# print(train_imgs.imgs) # 一个包含所有图像路径和对应类索引的列表
# 例如:[('../data\\hotdog\\train\\hotdog\\0.png', 0), ('../data\\hotdog\\train\\hotdog\\1.png', 0)
#       , ('../data\\hotdog\\train\\not-hotdog\\999.png', 1)]
# 显示了前8个正类样本图片和最后8张负类样本图片# hotdogs = [train_imgs[i][0] for i in range(8)] #train_imgs[i] 返回一个元组 (image, label),
# # 其中 image 是图像张量,label 是对应的标签。[0] 只提取图像张量。# not_hotdogs = [train_imgs[-i - 1][0] for i in range(8)] # 索引从 -1 到 -8# d2l.show_images(hotdogs + not_hotdogs, 2, 8, scale=1.4)
# plt.show() # 显示图片# 使用RGB通道的均值和标准差,以标准化每个通道
normalize = torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])train_augs = torchvision.transforms.Compose([#从图像中裁切随机大小和随机长宽比的区域,然后将该区域缩放为224 * 224torchvision.transforms.RandomResizedCrop(224),torchvision.transforms.RandomHorizontalFlip(),torchvision.transforms.ToTensor(),normalize])test_augs = torchvision.transforms.Compose([torchvision.transforms.Resize([256, 256]),torchvision.transforms.CenterCrop(224), # 裁剪中央224 * 224torchvision.transforms.ToTensor(),normalize])# 定义和初始化模型
# 使用在ImageNet数据集上预训练的ResNet-18作为源模型
pretrained_net = torchvision.models.resnet18(pretrained=True)# 源模型实例包含许多特征层和一个输出层fc
print(pretrained_net.fc)
# Linear(in_features=512, out_features=1000, bias=True)finetune_net = pretrained_net
# 改变输出层fc
finetune_net.fc = nn.Linear(finetune_net.fc.in_features, 2)
# 参数初始化
nn.init.xavier_uniform_(finetune_net.fc.weight)def train_batch_ch13(net, X, y, loss, trainer, devices):"""使用多GPU训练一个小批量数据。参数:net: 神经网络模型。X: 输入数据,张量或张量列表。y: 标签数据。loss: 损失函数。trainer: 优化器。devices: GPU设备列表。返回:train_loss_sum: 当前批次的训练损失和。train_acc_sum: 当前批次的训练准确度和。"""# 如果输入数据X是列表类型if isinstance(X, list):# 将列表中的每个张量移动到第一个GPU设备X = [x.to(devices[0]) for x in X]else:X = X.to(devices[0])# 如果X不是列表,直接将X移动到第一个GPU设备y = y.to(devices[0])# 将标签数据y移动到第一个GPU设备net.train() # 设置网络为训练模式trainer.zero_grad()# 梯度清零pred = net(X) # 前向传播,计算预测值l = loss(pred, y) # 计算损失l.sum().backward()# 反向传播,计算梯度trainer.step() # 更新模型参数train_loss_sum = l.sum()# 计算当前批次的总损失train_acc_sum = d2l.accuracy(pred, y)# 计算当前批次的总准确度return train_loss_sum, train_acc_sum# 返回训练损失和与准确度和def train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs,devices=d2l.try_all_gpus()):"""训练模型在多GPU参数:net: 神经网络模型。train_iter: 训练数据集的迭代器。test_iter: 测试数据集的迭代器。loss: 损失函数。trainer: 优化器。num_epochs: 训练的轮数。devices: GPU设备列表,默认使用所有可用的GPU。"""# 初始化计时器和训练批次数timer, num_batches = d2l.Timer(), len(train_iter)# 初始化动画器,用于实时绘制训练和测试指标animator = lp.Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0, 1],legend=['train loss', 'train acc', 'test acc'])# 将模型封装成 DataParallel 模式以支持多GPU训练,并将其移动到第一个GPU设备net = nn.DataParallel(net, device_ids=devices).to(devices[0])# 训练循环,遍历每个epochfor epoch in range(num_epochs):# 初始化指标累加器,metric[0]表示总损失,metric[1]表示总准确度,# metric[2]表示样本数量,metric[3]表示标签数量metric = lp.Accumulator(4)# 遍历训练数据集for i, (features, labels) in enumerate(train_iter):timer.start()  # 开始计时# 训练一个小批量数据,并获取损失和准确度l, acc = train_batch_ch13(net, features, labels, loss, trainer, devices)metric.add(l, acc, labels.shape[0], labels.numel())   # 更新指标累加器timer.stop()  # 停止计时# 每训练完五分之一的批次或者是最后一个批次时,更新动画器if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:animator.add(epoch + (i + 1) / num_batches,(metric[0] / metric[2], metric[1] / metric[3], None))test_acc = d2l.evaluate_accuracy_gpu(net, test_iter) # 在测试数据集上评估模型准确度animator.add(epoch + 1, (None, None, test_acc))# 更新动画器# 打印最终的训练损失、训练准确度和测试准确度print(f'loss {metric[0] / metric[2]:.3f}, train acc 'f'{metric[1] / metric[3]:.3f}, test acc {test_acc:.3f}')# 打印每秒处理的样本数和使用的GPU设备信息print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec on 'f'{str(devices)}')def train_fine_tuning(net, learning_rate, batch_size=128, num_epochs=5,param_group=True):"""参数:net: 神经网络模型。learning_rate: 学习率。batch_size: 每个小批量的大小,默认为128。num_epochs: 训练的轮数,默认为5。param_group: 是否对不同层使用不同的学习率,默认为True。"""train_iter = torch.utils.data.DataLoader(torchvision.datasets.ImageFolder(os.path.join(data_dir, 'train'), transform=train_augs),batch_size=batch_size, shuffle=True)  # 创建训练数据集的迭代器test_iter = torch.utils.data.DataLoader(torchvision.datasets.ImageFolder(os.path.join(data_dir, 'test'), transform=test_augs),batch_size=batch_size)  # 创建测试数据集的迭代器devices = d2l.try_all_gpus()  # 获取所有可用的GPU设备loss = nn.CrossEntropyLoss(reduction="none")   # 定义损失函数# 如果使用参数组if param_group:# 获取除最后全连接层外的所有参数# 列表params_1x,包含除最后一层全连接层外的所有参数。params_1x = [param for name, param in net.named_parameters()if name not in ["fc.weight", "fc.bias"]]# 定义优化器,分别为不同的参数组设置不同的学习率trainer = torch.optim.SGD([{'params': params_1x},{'params': net.fc.parameters(),'lr': learning_rate * 10}],lr=learning_rate, weight_decay=0.001)else:# 如果不使用参数组,为所有参数设置相同的学习率trainer = torch.optim.SGD(net.parameters(), lr=learning_rate,weight_decay=0.001)# 调用训练函数,开始训练train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs, devices)train_fine_tuning(finetune_net, 5e-5)
# loss 0.211, train acc 0.927, test acc 0.938
# 456.7 examples/sec on [device(type='cuda', index=0)]"""
为了进行比较,我们定义了一个相同的模型,但是将其所有模型参数初始化为随机值。
由于整个模型需要从头开始训练,因此我们需要使用更大的学习率。
"""
scratch_net = torchvision.models.resnet18()
scratch_net.fc = nn.Linear(scratch_net.fc.in_features, 2)
train_fine_tuning(scratch_net, 5e-4, param_group=False)
# loss 0.338, train acc 0.842, test acc 0.859
# 457.7 examples/sec on [device(type='cuda', index=0)]plt.show() #显示图片 

预训练resnet18模型运行效果:

在这里插入图片描述

初始化resnet18模型运行效果:

在这里插入图片描述

这篇关于动手学深度学习(Pytorch版)代码实践 -计算机视觉-37微调的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088545

相关文章

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

golang内存对齐的项目实践

《golang内存对齐的项目实践》本文主要介绍了golang内存对齐的项目实践,内存对齐不仅有助于提高内存访问效率,还确保了与硬件接口的兼容性,是Go语言编程中不可忽视的重要优化手段,下面就来介绍一下... 目录一、结构体中的字段顺序与内存对齐二、内存对齐的原理与规则三、调整结构体字段顺序优化内存对齐四、内

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav

Java实现状态模式的示例代码

《Java实现状态模式的示例代码》状态模式是一种行为型设计模式,允许对象根据其内部状态改变行为,本文主要介绍了Java实现状态模式的示例代码,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来... 目录一、简介1、定义2、状态模式的结构二、Java实现案例1、电灯开关状态案例2、番茄工作法状态案例