Simple-STNDT使用Transformer进行Spike信号的表征学习(一)数据处理篇

本文主要是介绍Simple-STNDT使用Transformer进行Spike信号的表征学习(一)数据处理篇,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 1.数据处理部分
      • 1.1 下载数据集
      • 1.2 数据集预处理
      • 1.3 划分train-val并创建Dataset对象
      • 1.4 掩码mask操作

数据、评估标准见NLB2021
https://neurallatents.github.io/

以下代码依据
https://github.com/trungle93/STNDT

原代码使用了 Ray+Config文件进行了参数搜索,库依赖较多,数据流过程不明显,代码冗杂,这里进行了抽丝剥茧,将其中最核心的部分提取出来。

1.数据处理部分

1.1 下载数据集

需要依赖 pip install dandi
downald.py

root = "D:/NeuralLatent/"
def downald_data():from dandi.download import downloaddownload("https://dandiarchive.org/dandiset/000128", root)download("https://dandiarchive.org/dandiset/000138", root)download("https://dandiarchive.org/dandiset/000139", root)download("https://dandiarchive.org/dandiset/000140", root)download("https://dandiarchive.org/dandiset/000129", root)download("https://dandiarchive.org/dandiset/000127", root)download("https://dandiarchive.org/dandiset/000130", root)

1.2 数据集预处理

需要依赖官方工具包pip install nlb_tools
主要是加载锋值序列数据,将其采样为5ms的时间槽
preprocess.py

## 以下为参数示例
# data_path = root + "/000129/sub-Indy/"
# dataset_name = "mc_rtt"
## 注意 "./data" 必须提前创建好from nlb_tools.make_tensors import make_train_input_tensors, make_eval_input_tensors, combine_h5def preprocess(data_path, dataset_name=None):dataset = NWBDataset(datapath)bin_width = 5dataset.resample(bin_width)make_train_input_tensors(dataset, dataset_name=dataset_name, trial_split="train", include_behavior=True, include_forward_pred=True, save_file=True,save_path=f"./data/{dataset_name}_train.h5")make_eval_input_tensors(dataset, dataset_name=dataset_name, trial_split="val", save_file=True, save_path=f"./data/{dataset_name}_val.h5")combine_h5([f"./data/{dataset_name}_train.h5", f"./data/{dataset_name}_val.h5"], save_path=f"./data/{dataset_name}_full.h5")## './data/mc_rtt_full.h5' 将成为后续的主要分析数据

1.3 划分train-val并创建Dataset对象

读取'./data/mc_rtt_full.h5'中的数据并创建dataset
dataset.py

import h5py
import numpy as np
import torch
from torch.utils import data
# data_path = "./data/mc_rtt_full.h5"class SpikesDataset(data.Dataset):def __init__(self, spikes, heldout_spikes, forward_spikes) -> None:self.spikes = spikesself.heldout_spikes = heldout_spikesself.forward_spikes = forward_spikesdef __len__(self):return self.spikes.size(0)def __getitem__(self, index):r"""Return spikes and rates, shaped T x N (num_neurons)"""return self.spikes[index], self.heldout_spikes[index], self.forward_spikes[index]def make_datasets(data_path):with h5py.File(data_path, 'r') as h5file:h5dict = {key: h5file[key][()] for key in h5file.keys()}if 'eval_spikes_heldin' in h5dict: # NLB dataget_key = lambda key: h5dict[key].astype(np.float32)train_data = get_key('train_spikes_heldin')train_data_fp = get_key('train_spikes_heldin_forward')train_data_heldout_fp = get_key('train_spikes_heldout_forward')train_data_all_fp = np.concatenate([train_data_fp, train_data_heldout_fp], -1)valid_data = get_key('eval_spikes_heldin')train_data_heldout = get_key('train_spikes_heldout')if 'eval_spikes_heldout' in h5dict:valid_data_heldout = get_key('eval_spikes_heldout')else:valid_data_heldout = np.zeros((valid_data.shape[0], valid_data.shape[1], train_data_heldout.shape[2]), dtype=np.float32)if 'eval_spikes_heldin_forward' in h5dict:valid_data_fp = get_key('eval_spikes_heldin_forward')valid_data_heldout_fp = get_key('eval_spikes_heldout_forward')valid_data_all_fp = np.concatenate([valid_data_fp, valid_data_heldout_fp], -1)else:valid_data_all_fp = np.zeros((valid_data.shape[0], train_data_fp.shape[1], valid_data.shape[2] + valid_data_heldout.shape[2]), dtype=np.float32)train_dataset = SpikesDataset(torch.tensor(train_data).long(),            # [810, 120, 98]torch.tensor(train_data_heldout).long(),    # [810, 120, 32]torch.tensor(train_data_all_fp).long(),     # [810, 40, 130])val_dataset = SpikesDataset(torch.tensor(valid_data).long(),            # [810, 120, 98]torch.tensor(valid_data_heldout).long(),    # [810, 120, 32]torch.tensor(valid_data_all_fp).long(),     # [810, 40, 130])return train_dataset, val_dataset

1.4 掩码mask操作

dataset.py

# Some infeasibly high spike count
UNMASKED_LABEL = -100def mask_batch(batch, heldout_spikes, forward_spikes):batch = batch.clone() # make sure we don't corrupt the input data (which is stored in memory)mask_ratio = 0.31254mask_random_ratio = 0.876mask_token_ratio = 0.527labels = batch.clone()mask_probs = torch.full(labels.shape, mask_ratio)# If we want any tokens to not get masked, do it here (but we don't currently have any)mask = torch.bernoulli(mask_probs)mask = mask.bool()labels[~mask] = UNMASKED_LABEL  # No ground truth for unmasked - use this to mask loss# We use random assignment so the model learns embeddings for non-mask tokens, and must rely on context# Most times, we replace tokens with MASK tokenindices_replaced = torch.bernoulli(torch.full(labels.shape, mask_token_ratio)).bool() & maskbatch[indices_replaced] = 0# Random % of the time, we replace masked input tokens with random value (the rest are left intact)indices_random = torch.bernoulli(torch.full(labels.shape, mask_random_ratio)).bool() & mask & ~indices_replacedrandom_spikes = torch.randint(batch.max(), labels.shape, dtype=torch.long)batch[indices_random] = random_spikes[indices_random]# heldout spikes are all maskedbatch = torch.cat([batch, torch.zeros_like(heldout_spikes)], -1)labels = torch.cat([labels, heldout_spikes.to(batch.device)], -1)batch = torch.cat([batch, torch.zeros_like(forward_spikes)], 1)labels = torch.cat([labels, forward_spikes.to(batch.device)], 1)# Leave the other 10% alonereturn batch, labels

下一篇: https://blog.csdn.net/weixin_46866349/article/details/139906187

这篇关于Simple-STNDT使用Transformer进行Spike信号的表征学习(一)数据处理篇的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088377

相关文章

java中使用POI生成Excel并导出过程

《java中使用POI生成Excel并导出过程》:本文主要介绍java中使用POI生成Excel并导出过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求说明及实现方式需求完成通用代码版本1版本2结果展示type参数为atype参数为b总结注:本文章中代码均为

Spring Boot3虚拟线程的使用步骤详解

《SpringBoot3虚拟线程的使用步骤详解》虚拟线程是Java19中引入的一个新特性,旨在通过简化线程管理来提升应用程序的并发性能,:本文主要介绍SpringBoot3虚拟线程的使用步骤,... 目录问题根源分析解决方案验证验证实验实验1:未启用keep-alive实验2:启用keep-alive扩展建

使用Java实现通用树形结构构建工具类

《使用Java实现通用树形结构构建工具类》这篇文章主要为大家详细介绍了如何使用Java实现通用树形结构构建工具类,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录完整代码一、设计思想与核心功能二、核心实现原理1. 数据结构准备阶段2. 循环依赖检测算法3. 树形结构构建4. 搜索子

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

GORM中Model和Table的区别及使用

《GORM中Model和Table的区别及使用》Model和Table是两种与数据库表交互的核心方法,但它们的用途和行为存在著差异,本文主要介绍了GORM中Model和Table的区别及使用,具有一... 目录1. Model 的作用与特点1.1 核心用途1.2 行为特点1.3 示例China编程代码2. Tab

SpringBoot使用OkHttp完成高效网络请求详解

《SpringBoot使用OkHttp完成高效网络请求详解》OkHttp是一个高效的HTTP客户端,支持同步和异步请求,且具备自动处理cookie、缓存和连接池等高级功能,下面我们来看看SpringB... 目录一、OkHttp 简介二、在 Spring Boot 中集成 OkHttp三、封装 OkHttp

使用Python实现获取网页指定内容

《使用Python实现获取网页指定内容》在当今互联网时代,网页数据抓取是一项非常重要的技能,本文将带你从零开始学习如何使用Python获取网页中的指定内容,希望对大家有所帮助... 目录引言1. 网页抓取的基本概念2. python中的网页抓取库3. 安装必要的库4. 发送HTTP请求并获取网页内容5. 解

使用Python实现网络设备配置备份与恢复

《使用Python实现网络设备配置备份与恢复》网络设备配置备份与恢复在网络安全管理中起着至关重要的作用,本文为大家介绍了如何通过Python实现网络设备配置备份与恢复,需要的可以参考下... 目录一、网络设备配置备份与恢复的概念与重要性二、网络设备配置备份与恢复的分类三、python网络设备配置备份与恢复实

C#中的 StreamReader/StreamWriter 使用示例详解

《C#中的StreamReader/StreamWriter使用示例详解》在C#开发中,StreamReader和StreamWriter是处理文本文件的核心类,属于System.IO命名空间,本... 目录前言一、什么是 StreamReader 和 StreamWriter?1. 定义2. 特点3. 用

Python使用date模块进行日期处理的终极指南

《Python使用date模块进行日期处理的终极指南》在处理与时间相关的数据时,Python的date模块是开发者最趁手的工具之一,本文将用通俗的语言,结合真实案例,带您掌握date模块的六大核心功能... 目录引言一、date模块的核心功能1.1 日期表示1.2 日期计算1.3 日期比较二、六大常用方法详