04 TensorFlow 2.0:高阶OP之meshgrid

2024-06-23 21:48

本文主要是介绍04 TensorFlow 2.0:高阶OP之meshgrid,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

谁诀别相思成疾莫问天涯
也莫问归期
怎奈何无人了解 情断之时
冷暖自知
                                                                                                                                《莫问归期》

内容覆盖:

  • stack
  • meshgrid
import tensorflow as tf
import os
import warningswarnings.filterwarnings('ignore')
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

这篇关于04 TensorFlow 2.0:高阶OP之meshgrid的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088368

相关文章

【C++高阶】C++类型转换全攻略:深入理解并高效应用

📝个人主页🌹:Eternity._ ⏩收录专栏⏪:C++ “ 登神长阶 ” 🤡往期回顾🤡:C++ 智能指针 🌹🌹期待您的关注 🌹🌹 ❀C++的类型转换 📒1. C语言中的类型转换📚2. C++强制类型转换⛰️static_cast🌞reinterpret_cast⭐const_cast🍁dynamic_cast 📜3. C++强制类型转换的原因📝

取得 Git 仓库 —— Git 学习笔记 04

取得 Git 仓库 —— Git 学习笔记 04 我认为, Git 的学习分为两大块:一是工作区、索引、本地版本库之间的交互;二是本地版本库和远程版本库之间的交互。第一块是基础,第二块是难点。 下面,我们就围绕着第一部分内容来学习,先不考虑远程仓库,只考虑本地仓库。 怎样取得项目的 Git 仓库? 有两种取得 Git 项目仓库的方法。第一种是在本地创建一个新的仓库,第二种是把其他地方的某个

浙大数据结构:04-树7 二叉搜索树的操作集

这道题答案都在PPT上,所以先学会再写的话并不难。 1、BinTree Insert( BinTree BST, ElementType X ) 递归实现,小就进左子树,大就进右子树。 为空就新建结点插入。 BinTree Insert( BinTree BST, ElementType X ){if(!BST){BST=(BinTree)malloc(sizeof(struct TNo

读软件设计的要素04概念的关系

1. 概念的关系 1.1. 概念是独立的,彼此间无须相互依赖 1.1.1. 一个概念是应该独立地被理解、设计和实现的 1.1.2. 独立性是概念的简单性和可重用性的关键 1.2. 软件存在依赖性 1.2.1. 不是说一个概念需要依赖另一个概念才能正确运行 1.2.2. 只有当一个概念存在时,包含另一个概念才有意义 1.3. 概念依赖关系图简要概括了软件的概念和概念存在的理

OpenGL ES 2.0渲染管线

http://codingnow.cn/opengles/1504.html Opengl es 2.0实现了可编程的图形管线,比起1.x的固定管线要复杂和灵活很多,由两部分规范组成:Opengl es 2.0 API规范和Opengl es着色语言规范。下图是Opengl es 2.0渲染管线,阴影部分是opengl es 2.0的可编程阶段。   1. 顶点着色器(Vert

win10不用anaconda安装tensorflow-cpu并导入pycharm

记录一下防止忘了 一、前提:已经安装了python3.6.4,想用tensorflow的包 二、在pycharm中File-Settings-Project Interpreter点“+”号导入很慢,所以直接在cmd中使用 pip install -i https://mirrors.aliyun.com/pypi/simple tensorflow-cpu下载好,默认下载的tensorflow

[苍穹外卖]-04菜品管理接口开发

效果预览 新增菜品 需求分析 查看产品原型分析需求, 包括用到哪些接口, 业务的限制规则 业务规则 菜品名称必须是唯一的菜品必须属于某个分类下, 不能单独存在新增菜品时可以根据情况选择菜品的口味每个菜品必须对应一张图片 接口设计 根据类型查询分类接口 文件上传接口 新增菜品接口 数据表设计 设计dish菜品表 和 dish_fl

稀疏自编码器tensorflow

自编码器是一种无监督机器学习算法,通过计算自编码的输出与原输入的误差,不断调节自编码器的参数,最终训练出模型。自编码器可以用于压缩输入信息,提取有用的输入特征。如,[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]四比特信息可以压缩成两位,[0,0],[1,0],[1,1],[0,1]。此时,自编码器的中间层的神经元个数为2。但是,有时中间隐藏层的神经元

Tensorflow实现与门感知机

感知机是最简单的神经网络,通过输入,进行加权处理,经过刺激函数,得到输出。通过输出计算误差,调整权重,最终,得到合适的加权函数。 今天,我通过tensorflow实现简单的感知机。 首先,初始化变量:     num_nodes = 2     output_units = 1     w = tf.Variable(tf.truncated_normal([num_nodes,output

Tensorflow lstm实现的小说撰写预测

最近,在研究深度学习方面的知识,结合Tensorflow,完成了基于lstm的小说预测程序demo。 lstm是改进的RNN,具有长期记忆功能,相对于RNN,增加了多个门来控制输入与输出。原理方面的知识网上很多,在此,我只是将我短暂学习的tensorflow写一个预测小说的demo,如果有错误,还望大家指出。 1、将小说进行分词,去除空格,建立词汇表与id的字典,生成初始输入模型的x与y d