【R数据科学读书笔记】R语言的数据结构原来可以这样理解

2024-06-23 20:58

本文主要是介绍【R数据科学读书笔记】R语言的数据结构原来可以这样理解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

R语言的数据结构原来可以这样理解

这是R数据科学的读书笔记之一,《R数据科学》是一本教你如何用R语言进行数据分析的书。即便我使用R语言快2年多了,但是读这本书还是受益颇多。

最早接触R语言的时候看的是《R语言实战》, 在第二章里,该书将R语言的数据结构分为6种,向量、矩阵、数组、数据框、因子和列表。当时的理解是,矩阵是二维的向量,数组是二维以上的向量,数据框是特殊性质的列表。

但是读完《R数据科学》的第15章:向量后,我发现原来R语言的数据结构原来可以只分为两类

  • 原子向量: 包含6种类型,逻辑性、整型、双精度型、字符型、复数型和原始型
  • 递归向量: 更常见的名字叫做列表

原子向量和递归向量的 唯一区别 就在于其中存放的值是否都是同种类型。

  • 向量(vector), 矩阵(matrix)和数组(array)以及因子(factor)都只能存放一种数据类型,因此is.atomic的判断结果都是TRUE, 所以都是原子向量
  • 数据库和列表可以包含不同类型的数据,所以用is.recursive的判断结果是TRUE,所以都是递归向量

此外,每个向量都有两个关键属性(properties),类型和长度, 分别用typeof()length()进行查看。分别去用typeof()查看向量、矩阵、数组、因子、数据框和列表时,你会发现前面4个返回都是6种基本数据类型,而数据框和列表返回的都是"list".

我们还可以在向量上附加任意多的元数据(metadata),这些元数据称之为特征(attributes)。 附加不同的特性后就得到了扩展向量(augmented vectors), 其中名称、维度和类是三种特别重要的属性。

如果你去查看attribute和property的中文翻译时,你会发现两者都有一个释义叫做属性

从扩展向量的角度上看数据类型时,可以得到如下洞见

第一: 矩阵和数组相对于普通向量主要就多了一个dim属性,所以我们可以通过如下的操作来创建矩阵和数组

is.v.m.a <- function(x) {c(is.vector(x), is.matrix(x), is.array(x))}
v <- c(1,2,3,4)
is.v.m.a(v) # TRUE FALSE FALSE
attr(v,'dim') <- c(2,2)
is.v.m.a(v) # FALSE  TRUE  TRUE
attr(v,'dim') <- c(1,2,2)
is.v.m.a(v) # FALSE FALSE  TRUE  

注: 矩阵是特殊的数组。

第二:名称是一种额外属性, 对于向量是"names", 对于数组则是"dimnames[[x]]", x表示不同维度, 对于列表而言则是"names",对于数据框是"names"对于列名和"row.names"对于行名

v <- c(1,2,3,4)
attr(v,'names') <- c('a','b','c','d')

第三:类(class)也是一种属性,类是面向对象编程的一个概念。在R语言中,我们会发现同一个函数居然可以用在不同的数据集,比如说print用在ggplot2的对象中,结果是输出图片,这种函数就称之为泛型函数

methods(print)# 内容过多,不在这里展示
# 我们可以具体某个函数的代码
getS3method("print","data.frame")

关于泛型函数的更多知识会在后续的面向对象编程里介绍。

其他知识点

R语言的缺失值一般都标记为"NA", 因此在读取数据的时候默认也将文件中的"NA"当作缺失值,但是很有可能其他人会用"null"作为缺失值的标记,所以结果就会导致这一列全部被当做是字符串,影响后续的分析。

在向量取子集时,熟悉Python的人需要注意一点,Python中x=[1,2,3,4]; x[-1]表示选择最后一个元素,而在R语言里x= c(1,2,3,4); x[-1]表示删除第一个元素,即R用负整数取子集时会丢弃对应位置的元素。

[[[在提取列表时,一定要注意,[[会使列表降低一个层次,而[会返回一个新的、更小的列表,也就是

l <- list(c(1,2,3))
l[1] # 返回列表
l[[1]] # 返回向量

为了更好理解这两者在列表中的差异,作者还提供了一个非常形象的例子,我用另一个例子来说明下:

我所就读的初中每个年级段大概有10个班级,每个班级的人数都不太一样。那么这里的一个年级段就是一个列表x,每个班级都是列表里元素。那么x[1]表示的是解散其他所有班级,只留下第一个班级组成年级段。而x[[1]]表示是第一个班级。x[[1]][1]表示的可能是第一个班级里的第一个学生。

这篇关于【R数据科学读书笔记】R语言的数据结构原来可以这样理解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088258

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl