使用Rcpp提高性能之入门篇

2024-06-23 20:18

本文主要是介绍使用Rcpp提高性能之入门篇,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

C++能解决的瓶颈问题有:

  • 由于迭代依赖于之前结果,循环难以简便的向量化运算
  • 递归函数,或者是需要对同一个函数运算成千上万次
  • R语言缺少一些高级数据结构和算法

我们只需要在代码中写一部分C++代码来就可以处理上面这些问题。后续操作在Windows下进行,你需要安装Rtools,用install.packages("Rcpp")安装新版的Rcpp,最重要一点,你需要保证你R语言时不能是C:/Program Files/R/R-3.5.1/这种形式,否则会报错。

后续操作会用到microbenchmark包来评估R代码和RCPP的效率差异,用install.packages('microbenchmark)安装

RCPP入门

先从一个简单的add函数开始,学习如何用cppFunction在R里面写C++代码

library(Rcpp)cppFunction('int add(int x, int y, int z) {int sum = x + y + z;return sum;
}')
add
# function (x, y) 
# .Call(<pointer: 0x0000000063c015a0>, x, y)

Rcpp将会编译C++代码, 然后构建能够连接到C++函数的R函数。后续将会介绍如何将一些R代码改写成C++代码。

  • 标量输入,标量输出
  • 向量输入,标量输出
  • 向量输入,向量输出
  • 矩阵输入,向量输出

没有输入,标量输出

最简单的函数就是不提供任何输出,返回一个输出,比如说

one <- function() 1L

等价的C++代码是

int one(){return 1;
}

那么将这段C++代码在R用cppFunction中改写就是如下

cppFunction('int one(){return 1;
}')

上面这段函数就展示了R和C++之间一些重要区别:

  • C++写代码不是函数名 <- function(参数){} 而是 函数名(函数参数){}
  • C++中必须声明返回类型,ini就是标量整数。C++对应R语言常用向量的类是: NumericVector,IntegerVector, CharacterVectorLogicalVector.
  • R语言没有标量,全是向量。而C++有向量和标量之分,标量的数据类型是double, int, Stringbool
  • C++你必须要用到return声明要返回的数据
  • 每段代码后要跟着;

标量输入,标量输出

我们可以写一个函数,sign,他的功能就是把一个负数转成正数,正数不变

signR <- function(x){if (x > 0){x} else if (x == 0 ){0} else{-x}
}cppFunction('int signC(int x){if( x >0 ){return x;} else if (x == 0){return 0;} else {return -x;}
}')

这个例子中要注意两件事情

  • C++中,你需要声明输入的数据类型
  • C++和R的条件语句长得一样。

向量输入,标量输出

R和C++一大区别就是R的循环效率很低。因此在R语言要尽量避免使用显示的循环语句,尽量向量化运算函数。而C++的循环花销特别小,所以可以放心大胆的用。

让我们用R代码写一个求和函数sum 以及 C++的求和函数,然后比较下效率

sumR <- function(x){total <- 0for (i in seq_along(x)){total <- total + x[i]}total
}cppFunction('int sumC(NumericVector x ){ int n = x.size();double total = 0;for(int i = 0; i < n; ++i){total += x[i];  }return total;}')

C++版本和R版本的逻辑相同,但是有如下不同

  • .size()确认向量的长度
  • for的写法为for(初始值; 判断语句; 递增)
  • 记住: C++的向量索引从0开始,R是从1开始
  • 向量赋值是=而不是<-
  • total += x[i]等价于total = total + x[i], 类似的符号还有-=, *=, /=

最后用microbenchmark比较下,R自带求和函数和我们自己写的两个版本的差异

x <- runif(1000)
microbenchmark(sum(x),sumC(x),sumR(x)
)

最快的是高度优化过的内置函数,最差的就是sumR(), 速度会比sumC()慢10倍以上。

向量输入,向量输出

R中比较常见的操作就是向量间运算,尤其R还会自动补齐。自动补齐某些时候会造成一些问题,但是C++不存在这个问题。我们可以写一个RCPP的+函数

cppFunction('NumericVector addC(NumericVector x, NumericVector y){int xn = x.size();int yn = y.size();if (xn != yn){stop("input should be same length");}NumericVector out(xn);for(int i=0; i< xn; ++i){out[i] = x[i] + y[i];}return out;
}')x <- runif(1e6)
y <- runif(1e6)
microbenchmark(addC(x,y),x+y)

矩阵输入,向量输出

每个向量类型都有矩阵等价类,NumericMatrix, IntegerMatirx, CharacterMatirx, LogicalMatirx. 让我们尝试写一个rowSums()函数

cppFunction('NumericVector rowSumsC(NumericMatrix x){int nrow = x.nrow(), ncol = x.ncol();NumericVector out(nrow);for(int i = 0; i < nrow; i++){double total =0;for(int j =0; j< ncol; j++){total += x(i,j);}out[i] = total;}return out;
}')
set.seed(1024)
x <- matrix(sample(100), nrow = 10)
rowSumsC(x)

这里注意有两点不同,在C++中,你用()对矩阵取值,而不是[]

尽管看起来C++的代码运行起来比R语言快多了,比如说R要一分钟,RCPP只要一秒,但是如果算上我们写代码的时间和调试代码的时间,刚开始不熟练估计要10分钟,那么总体来看,还是直接上手写R代码比较合适。

但是如果有一些代码要不断复用,那么写C++代码还是很划算。这个时候就建议将代码写到专门的文本中,用sourceCpp()加载,而不是cppFunction()函数

在Rsutdio中可以创建一个C++模板文件,代码写完之后还可以进行debug。

创建模板

比如说在里面写上面的rowSumsC函数,分为如下几个部分

导入头文件,加载Rcpp到命名空间中,类似于library()

#include <Rcpp.h>
using namespace Rcpp;

使用// [[Rcpp::export]]说明这里的函数会被R使用

// [[Rcpp::export]]
NumericVector rowSumsC(NumericMatrix x){int ncol = x.ncol(), nrow = x.nrow();NumericVector out(nrow);for (int i =0; i < nrow; i++ ){double total = 0;for (int j =0 ;j < ncol; j++){total += x(i,j);}out[i] = total;}return out;
}

下面部分会在sourceCpp()加载后自动运行

/*** R
library(microbenchmark)
set.seed(1014)
x <- matrix(sample(100), 10)
microbenchmark(rowSumsC(x),Matrix::rowSums(x)
)
*/

将文件保存成rowSumsC.cpp, 之后在R里用sourceCpp(file = "rowSumsC.cpp")

这篇关于使用Rcpp提高性能之入门篇的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088167

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录