python实现技术指标(简单移动平均,加权移动平均线,指数移动平均线)

本文主要是介绍python实现技术指标(简单移动平均,加权移动平均线,指数移动平均线),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

移动平均线是最常见的技术指标,它能够去除时间序列的短期波动,使得数据变得平滑,从而可以方便看出序列的趋势特征。常见的移动平均线有简单移动平均线,加权移动平均线,指数移动平均线。

一. 简单移动平均(SMA)

简单移动平均线(Simple Moving Average),很好理解,就是将过去n个窗口内的价格进行算术平均
S M A t ( n ) = 1 n ( X t − n + 1 + X t − n + 2 + . . . + X t ) SMA_t(n) = \frac{1}{n}(X_{t-n+1} + X_{t-n+2} + ... + X_t) SMAt(n)=n1(Xtn+1+Xtn+2+...+Xt)

以下是贵州茅台从 2018.6.1 2018.6.1 2018.6.1 2019.12.31 2019.12.31 2019.12.31收盘价的简单移动平均线。

import pandas as pd
import baostock as bs
import matplotlib.pyplot as pltdef get_data(code, start_date, end_date):lg = bs.login()rs = bs.query_history_k_data_plus(code,"date,code,open,high,low,close,volume",start_date=start_date, end_date=end_date,frequency="d", adjustflag="3")data_list = []while (rs.error_code == '0') & rs.next():data_list.append(rs.get_row_data())result = pd.DataFrame(data_list, columns=rs.fields)bs.logout()result['date'] = pd.to_datetime(result['date'])result['open'] = result['open'].astype(float)result['high'] = result['high'].astype(float)result['low'] = result['low'].astype(float)result['close'] = result['close'].astype(float)result['volume'] = result['volume'].astype(float)result.set_index(result['date'], inplace=True)return resultif __name__ == '__main__':data = get_data('sh.600519', '2018-06-01', '2019-12-31')data['SMA10'] = data['close'].rolling(10).mean()data['SMA20'] = data['close'].rolling(20).mean()fig = plt.figure(figsize=(20, 10))ax = fig.add_subplot()ax.plot(data.index, data['close'], linestyle='--', label='close')ax.plot(data.index, data['SMA10'], label='SMA10')ax.plot(data.index, data['SMA20'], label='SMA20')ax.legend()plt.show()

在这里插入图片描述

二. 加权移动平均(WMA)

加权移动平均(Weighted Moving Average)在计算平均值时,对最近的数据赋予的权重比历史数据的权重要大。
W M A ( n ) t = n X t + ( n − 1 ) X t − 1 + . . . + 2 X t − n + 2 + X t − n + 1 n + ( n − 1 ) + . . . + 2 + 1 WMA(n)_t = \frac{nX_t + (n-1)X_{t-1} + ... + 2X_{t-n+2} + X_{t-n+1}}{n + (n - 1) + ...+ 2 + 1} WMA(n)t=n+(n1)+...+2+1nXt+(n1)Xt1+...+2Xtn+2+Xtn+1

以下是贵州茅台从 2018.6.1 2018.6.1 2018.6.1 2019.12.31 2019.12.31 2019.12.31收盘价的加权移动平均线。

import numpy as np
import pandas as pd
import baostock as bs
import matplotlib.pyplot as pltdef get_data(code, start_date, end_date):lg = bs.login()rs = bs.query_history_k_data_plus(code,"date,code,open,high,low,close,volume",start_date=start_date, end_date=end_date,frequency="d", adjustflag="3")data_list = []while (rs.error_code == '0') & rs.next():data_list.append(rs.get_row_data())result = pd.DataFrame(data_list, columns=rs.fields)bs.logout()result['date'] = pd.to_datetime(result['date'])result['open'] = result['open'].astype(float)result['high'] = result['high'].astype(float)result['low'] = result['low'].astype(float)result['close'] = result['close'].astype(float)result['volume'] = result['volume'].astype(float)result.set_index(result['date'], inplace=True)return resultif __name__ == '__main__':data = get_data('sh.600519', '2018-06-01', '2019-12-31')n = 10weights = np.array(range(1, n + 1))weights_sum = np.sum(weights)data['WMA10'] = data['close'].rolling(window=n, min_periods=n).apply(lambda x: np.sum(x * weights) / weights_sum)fig = plt.figure(figsize=(20, 10))ax = fig.add_subplot()ax.plot(data.index, data['close'], linestyle='--', label='close')ax.plot(data.index, data['WMA10'], label='WMA10')ax.legend()plt.show()

在这里插入图片描述

三. 指数移动平均(EMA)

指数移动平均(Exponential Moving Average)跟加权移动平均类似,只是它对最近的数据赋予了更高的权重。
E M A t = α X t + ( 1 − α ) E M A t − 1 EMA_t = {\alpha}X_t + (1-\alpha)EMA_{t-1} EMAt=αXt+(1α)EMAt1
α \alpha α一般取 2 / ( n + 1 ) 2/(n + 1) 2/(n+1), n n n为数据序列长度,pandas中计算EMA一般可以使用ewm方法。

以下是贵州茅台从 2018.6.1 2018.6.1 2018.6.1 2019.12.31 2019.12.31 2019.12.31收盘价的指数移动平均线。

import numpy as np
import pandas as pd
import baostock as bs
import matplotlib.pyplot as pltdef get_data(code, start_date, end_date):lg = bs.login()rs = bs.query_history_k_data_plus(code,"date,code,open,high,low,close,volume",start_date=start_date, end_date=end_date,frequency="d", adjustflag="3")data_list = []while (rs.error_code == '0') & rs.next():data_list.append(rs.get_row_data())result = pd.DataFrame(data_list, columns=rs.fields)bs.logout()result['date'] = pd.to_datetime(result['date'])result['open'] = result['open'].astype(float)result['high'] = result['high'].astype(float)result['low'] = result['low'].astype(float)result['close'] = result['close'].astype(float)result['volume'] = result['volume'].astype(float)result.set_index(result['date'], inplace=True)return resultif __name__ == '__main__':data = get_data('sh.600519', '2018-06-01', '2019-12-31')[['date', 'close']]data['EMA10'] = data['close'].ewm(span=10, adjust=True).mean()fig = plt.figure(figsize=(20, 10))ax = fig.add_subplot()ax.plot(data.index, data['close'], linestyle='--', label='close')ax.plot(data.index, data['EMA10'], label='EMA10')ax.legend()plt.show()

在这里插入图片描述

四. 对比三种均线
1. 三种均线的权重对比

从权重思维来看,三种方法都可以认为是加权平均。

  • SMA:权重系数一致
  • WMA:权重系数随时间间隔线性递减
  • EMA:权重系数随时间间隔指数递减

下面通过程序展示三种均线的权重系数的递减情况

import numpy as np
import pandas as pd
import matplotlib.pyplot as pltif __name__ == '__main__':n = 30# 简单移动平均权重weight_sma = np.ones(n)# 加权移动平均weights_wma = range(1, n + 1)weights_wma /= np.sum(weights_wma)weights_wma = weights_wma[::-1]# 指数移动平均alpha = 2 / (n + 1)t = np.array(range(0, n))weights_ema = alpha * (1 - alpha) ** tdf = pd.DataFrame({"SMA30-Weights": weight_sma, "WMA30-Weights": weights_wma, "EMA30-Weights": weights_ema})ax = df.plot.bar(subplots=True, figsize=(16, 6), title=['', '', ''])plt.show()

在这里插入图片描述
从上图中的权重系数随时间间隔衰减情况可以看出,指数移动平均系数衰减较快,也因此一般也能更快的发现趋势的变化。

2. 三种均线可视化

下面展示贵州茅台从2018.6.1到2019.12.31收盘价的三种移动均线。

import numpy as np
import pandas as pd
import baostock as bs
import matplotlib.pyplot as pltdef get_data(code, start_date, end_date):lg = bs.login()rs = bs.query_history_k_data_plus(code,"date,code,open,high,low,close,volume",start_date=start_date, end_date=end_date,frequency="d", adjustflag="3")data_list = []while (rs.error_code == '0') & rs.next():data_list.append(rs.get_row_data())result = pd.DataFrame(data_list, columns=rs.fields)bs.logout()result['date'] = pd.to_datetime(result['date'])result['open'] = result['open'].astype(float)result['high'] = result['high'].astype(float)result['low'] = result['low'].astype(float)result['close'] = result['close'].astype(float)result['volume'] = result['volume'].astype(float)result.set_index(result['date'], inplace=True)return result# 简单移动平均
def sma_demo(data, n):data['SMA20'] = data['close'].rolling(window=n, min_periods=n).mean()return data# 加权移动平均
def wma_demo(data, n):weights = np.array(range(1, n + 1))weights_sum = np.sum(weights)data['WMA20'] = data['close'].rolling(window = n, min_periods=n).apply(lambda x: np.sum(x * weights) / weights_sum)return data# 指数平均
def ema_demo(data, n):data['EMA20'] = data['close'].ewm(span=n, min_periods=n, adjust=True).mean()return dataif __name__ == '__main__':data = get_data('sh.600519', '2018-06-01', '2019-12-31')[['close']]data = sma_demo(data, 20)data = wma_demo(data, 20)data = ema_demo(data, 20)fig = plt.figure(figsize=(30, 20))ax = fig.add_subplot()ax.plot(data.index, data['close'], linestyle='--', label='close')ax.plot(data.index, data['SMA20'], label='SMA20')ax.plot(data.index, data['WMA20'], label='WMA20')ax.plot(data.index, data['EMA20'], label='EMA20')ax.legend()plt.show()

运行结果:
在这里插入图片描述

这篇关于python实现技术指标(简单移动平均,加权移动平均线,指数移动平均线)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088161

相关文章

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Go语言开发实现查询IP信息的MCP服务器

《Go语言开发实现查询IP信息的MCP服务器》随着MCP的快速普及和广泛应用,MCP服务器也层出不穷,本文将详细介绍如何在Go语言中使用go-mcp库来开发一个查询IP信息的MCP... 目录前言mcp-ip-geo 服务器目录结构说明查询 IP 信息功能实现工具实现工具管理查询单个 IP 信息工具的实现服

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾

Python ZIP文件操作技巧详解

《PythonZIP文件操作技巧详解》在数据处理和系统开发中,ZIP文件操作是开发者必须掌握的核心技能,Python标准库提供的zipfile模块以简洁的API和跨平台特性,成为处理ZIP文件的首选... 目录一、ZIP文件操作基础三板斧1.1 创建压缩包1.2 解压操作1.3 文件遍历与信息获取二、进阶技

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py