【python】python学生成绩数据分析可视化(源码+数据+论文)【独一无二】

本文主要是介绍【python】python学生成绩数据分析可视化(源码+数据+论文)【独一无二】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

请添加图片描述


👉博__主👈:米码收割机
👉技__能👈:C++/Python语言
👉公众号👈:测试开发自动化【获取源码+商业合作】
👉荣__誉👈:阿里云博客专家博主、51CTO技术博主
👉专__注👈:专注主流机器人、人工智能等相关领域的开发、测试技术。


【python】python学生成绩数据分析可视化(源码+数据+论文)【独一无二】


目录

  • 【python】python学生成绩数据分析可视化(源码+数据+论文)【独一无二】
  • 一、设计要求
  • 二、数据分析


一、设计要求

1.分析学生本人和班级整体的学习水平,为自己以及班级提供提高学习成绩的建议。
2. 构建学生本人和班级整体的学习细分情况,为老师判定学生学习情况提供参考意见。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “学成” 获取。👈👈👈

  1. 金融6学生名单.xlsx
    包含学生的基本信息,如姓名、学号、院系、专业、班级和学校代码等。学号(学号/工号)是学生的唯一标识符,将用于与“金融6综合成绩.xlsx”中的数据进行匹配。该文件确保了每个学生在成绩分析过程中都有明确的身份标识,便于进行数据合并和分析。

  2. 金融6综合成绩.xlsx
    包含学生的学号以及对应的平时成绩和综合成绩。成绩数据包括课程音视频成绩(占10%)、章节测验成绩(占40%)、章节学习次数(占10%)、作业成绩(占30%)和考试成绩(占10%)。每个学生的学号在“金融6学生名单.xlsx”中都能找到对应的记录。通过这些详细的成绩数据,可以对学生的学习情况进行全面分析和评估。


二、数据分析

  1. 学生个体成绩分析:
    我们统计了每位学生的平均成绩、最高成绩和最低成绩,以帮助学生了解自己的学习状况。以学生郭帅为例,我们计算出了她的平均成绩为31.98分,最高成绩为31.98分,最低成绩为31.98分。这些指标反映了学生在整个学期中的表现。
本人平均成绩: 23.07, 最高成绩: 23.07, 最低成绩: 23.07
班级平均成绩: 23.51, 最高成绩: 35.07, 最低成绩: 3.64

为了全面了解班级整体的学习情况,我们计算了班级的平均成绩(23.26分)、最高成绩(31.98分)和最低成绩(19.14分)。这些数据为教师提供了班级整体的学习效果反馈,有助于优化教学方法。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “学成” 获取。👈👈👈

# 1. 班级成绩Top10的柱状图
top10_students = merged_data.nlargest(10, '综合成绩')
plt.figure(figsize=(10, 6))
plt.bar(top10_students['学生姓名'], top10_students['综合成绩'])
plt.xlabel('学生姓名')
plt.ylabel('综合成绩')
plt.title('班级成绩Top10')
plt.xticks(rotation=45)
plt.show()

在这里插入图片描述

我们为每个学生绘制了个人成绩的趋势图,展示其在课程音视频、章节测验、章节学习次数、作业和考试成绩等各项评估中的具体表现。趋势图帮助学生和教师了解学生在不同评估项目上的表现及其变化趋势,从而识别出学生的优势和薄弱环节。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “学成” 获取。👈👈👈

在这里插入图片描述

我们绘制了班级不同分数段学生人数分布的饼图。饼图清晰展示了班级学生在不同成绩区间的分布情况,这些信息对于教师了解班级成绩的总体情况及制定教学策略具有重要意义。

在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “学成” 获取。👈👈👈

散点图展示了课程音视频成绩与综合成绩之间的关系。通过散点图,我们可以观察到这两个评估项目之间的相关性,帮助教师了解不同教学方式对学生整体成绩的影响。
在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “学成” 获取。👈👈👈

我们使用箱线图展示了班级综合成绩的分布情况。箱线图能够直观地显示出成绩的中位数、四分位数和异常值,有助于教师了解班级成绩的离散程度和整体分布。

plt.figure(figsize=(10, 6))
plt.boxplot(merged_data['综合成绩'], vert=True, patch_artist=True)
plt.xlabel('班级')
plt.ylabel('综合成绩')
plt.title('班级综合成绩分布箱线图')
plt.show()

在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “学成” 获取。👈👈👈

雷达图展示了某个学生在各个评估项目上的表现。通过雷达图,学生和教师可以全面了解学生在不同评估项目上的综合表现,识别出学生的优势和需要改进的领域。

在这里插入图片描述

fig, ax = plt.subplots(figsize=(6, 6), subplot_kw=dict(polar=True))
ax.plot(angles, personal_data, 'o-', linewidth=2)
ax.fill(angles, personal_data, alpha=0.25)
ax.set_yticklabels([])
ax.set_xticks(angles[:-1])
ax.set_xticklabels(labels)
ax.set_title('郭帅的雷达图')
plt.show()

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “学成” 获取。👈👈👈

这篇关于【python】python学生成绩数据分析可视化(源码+数据+论文)【独一无二】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088097

相关文章

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1