LeetCode 算法:LRU 缓存 c++

2024-06-23 15:12
文章标签 leetcode 算法 c++ 缓存 lru

本文主要是介绍LeetCode 算法:LRU 缓存 c++,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原题链接🔗:
难度:中等⭐️⭐️

题目

请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。

实现 LRUCache 类:

  • LRUCache(int capacity) 以 正整数 作为容量 capacity 初始化 LRU 缓存
  • int get(int key)如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1 。
  • void put(int key, int value) 如果关键字 key 已经存在,则变更其数据值 value ;如果不存在,则向缓存中插入该组 key-value 。如果插入操作导致关键字数量超过 capacity ,则应该 逐出 最久未使用的关键字。

函数 getput 必须以 O(1) 的平均时间复杂度运行。

示例

输入
[“LRUCache”, “put”, “put”, “get”, “put”, “get”, “put”, “get”, “get”, “get”]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
输出
[null, null, null, 1, null, -1, null, -1, 3, 4]

解释
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // 缓存是 {1=1}
lRUCache.put(2, 2); // 缓存是 {1=1, 2=2}
lRUCache.get(1); // 返回 1
lRUCache.put(3, 3); // 该操作会使得关键字 2 作废,缓存是 {1=1, 3=3}
lRUCache.get(2); // 返回 -1 (未找到)
lRUCache.put(4, 4); // 该操作会使得关键字 1 作废,缓存是 {4=4, 3=3}
lRUCache.get(1); // 返回 -1 (未找到)
lRUCache.get(3); // 返回 3
lRUCache.get(4); // 返回 4

提示

  • 1 <= capacity <= 3000
  • 0 <= key <= 10000
  • 0 <= value <= 105
  • 最多调用 2 * 105 次 get 和 put

题解

  1. 解题思路

LeetCode 上的 LRU 缓存问题(题目编号 146)要求我们实现一个 LRU 缓存类,该类支持两种操作:get 和
put。以下是解决这个问题的一般思路:

  • 理解问题:
    • get(key): 从缓存中获取键对应的值(如果存在)。缓存中键的最近使用时间应该被更新为当前时间。 -
    • put(key, value): 向缓存中插入或更新键和值。如果键已存在,则更新其值并更新其使用时间。如果键不存在,并且缓存已满,则需要先移除最久未使用的键。
  • 设计数据结构: 为了实现 LRU 缓存,我们需要两个主要的数据结构:
    • 哈希表:存储键到值的映射,以及键到双向链表中节点的引用,以便 O(1) 时间复杂度的访问。
    • 双向链表:存储缓存项的顺序,最近使用的项在头部,最久未使用的项在尾部。
  • 算法实现:
    • 初始化:创建一个固定大小的哈希表和空的双向链表。
    • get(key): 检查键是否存在于哈希表中。 如果存在,移动该键关联的节点到双向链表的头部,表示最近使用。 返回键对应的值。 如果不存在,返回 -1。
    • put(key, value)
      • 如果键已存在于哈希表中,更新其值,并将节点移动到双向链表的头部。
      • 如果键不存在:
        • 如果缓存未满,创建新节点,添加到双向链表的头部,并在哈希表中添加键到节点的映射。
        • 如果缓存已满,从双向链表尾部移除最久未使用的节点,并从哈希表中删除对应的键。
        • 然后,创建新节点,添加到双向链表的头部,并更新哈希表。
  1. 复杂度:时间复杂度O(1),空间复杂度O(capacity)。
  2. c++ demo
#include <iostream>
#include <unordered_map>
#include <list>class LRUCache {
private:int capacity;std::list<int> items; // 双向链表,存储键std::unordered_map<int, std::list<int>::iterator> cache; // 哈希表,存储键到链表迭代器的映射void moveToHead(int key) {items.splice(items.begin(), items, cache[key]); // 将节点移动到头部}void removeLeastRecent() {if (!items.empty()) {cache.erase(items.back()); // 从哈希表中删除items.pop_back(); // 从链表中删除}}public:LRUCache(int capacity) : capacity(capacity) {}int get(int key) {if (cache.find(key) != cache.end()) {moveToHead(key);return items.front();}else {return -1; // 键不存在}}void put(int key, int value) {if (cache.find(key) != cache.end()) {items.erase(cache[key]); // 从链表中删除旧节点cache.erase(key);}if (items.size() >= capacity) {removeLeastRecent(); // 检查是否需要淘汰}items.push_front(key); // 添加新节点到头部cache[key] = items.begin(); // 更新哈希表}
};int main() {LRUCache cache(2);cache.put(1, 1);std::cout << "Get 1: " << cache.get(1) << std::endl; // 返回 1cache.put(2, 2);std::cout << "Get 2: " << cache.get(2) << std::endl; // 返回 2cache.put(3, 3); // 淘汰键 1 使用 putstd::cout << "Get 1: " << cache.get(1) << std::endl; // 返回 -1 (未找到)std::cout << "Get 3: " << cache.get(3) << std::endl; // 返回 3cache.put(4, 4); // 淘汰键 2 使用 putstd::cout << "Get 2: " << cache.get(2) << std::endl; // 返回 -1 (未找到)cache.put(2, 6); // 重新添加键 2std::cout << "Get 2: " << cache.get(2) << std::endl; // 返回 6return 0;
}
  • 输出结果:

Get 1: 1
Get 2: 2
Get 1: -1
Get 3: 3
Get 2: -1
Get 2: 2

LRU 缓存

LRU(Least Recently Used)缓存是一种常用的缓存淘汰策略,它基于一个原则:如果数据最近被访问过,那么将来被访问的几率也更高。LRU 缓存通常用于操作系统、数据库、Web 服务器等场景,以减少内存或存储的使用,同时保持最常访问的数据可用。

LRU 缓存的实现

实现 LRU 缓存的一种常见方法是使用哈希表和双向链表。哈希表提供了 O(1) 的访问时间复杂度,而双向链表则允许我们以 O(1) 的时间复杂度进行数据的添加和删除操作。

数据结构
  1. 哈希表:存储键和对应节点的指针,以便快速访问。
  2. 双向链表:存储缓存中的项,最近使用的项在头部,最不常使用的项在尾部。
操作
  1. 访问缓存

    • 检查键是否存在于哈希表中。
    • 如果存在,将对应的节点移动到双向链表的头部。
    • 如果不存在,根据需要从链表尾部移除一个节点(如果缓存已满),然后将新节点添加到头部。
  2. 添加到缓存

    • 如果键已存在,更新其值,并将节点移动到链表头部。
    • 如果键不存在,创建新节点,添加到链表头部,并在哈希表中记录。
  3. 淘汰缓存

    • 当缓存达到容量限制时,从链表尾部移除最不常使用的项,并从哈希表中删除相应的键。

示例代码

以下是使用 C++ 实现的 LRU 缓存的简单示例:

#include <iostream>
#include <list>
#include <unordered_map>class LRUCache {
private:int capacity;std::list<int> items; // 双向链表,存储键std::unordered_map<int, std::list<int>::iterator> cache; // 哈希表,存储键到链表迭代器的映射void moveToHead(int key) {items.splice(items.begin(), items, cache[key]); // 将节点移动到头部}void removeLeastRecent() {if (items.size() > capacity) {cache.erase(items.back()); // 从哈希表中删除items.pop_back(); // 从链表中删除}}public:LRUCache(int capacity) : capacity(capacity) {}int get(int key) {if (cache.find(key) != cache.end()) {moveToHead(key);return items.front();} else {return -1; // 键不存在}}void put(int key, int value) {if (cache.find(key) != cache.end()) {items.erase(cache[key]); // 从链表中删除旧节点} else {removeLeastRecent(); // 检查是否需要淘汰}items.push_front(key); // 添加新节点到头部cache[key] = items.begin(); // 更新哈希表}
};int main() {LRUCache cache(2);cache.put(1, 1);std::cout << cache.get(1) << std::endl; // 返回 1cache.put(2, 2);std::cout << cache.get(2) << std::endl; // 返回 2cache.put(3, 3); // 淘汰键 1std::cout << cache.get(1) << std::endl; // 返回 -1 (未找到)std::cout << cache.get(3) << std::endl; // 返回 3cache.put(4, 4); // 淘汰键 2std::cout << cache.get(2) << std::endl; // 返回 -1 (未找到)return 0;
}

这个示例展示了 LRU 缓存的基本操作,包括 getput 方法。get 方法用于访问缓存中的项,而 put 方法用于添加或更新缓存中的项。如果缓存达到容量限制,put 方法还会淘汰最不常使用的项。

这篇关于LeetCode 算法:LRU 缓存 c++的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1087515

相关文章

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

C++ 中的 if-constexpr语法和作用

《C++中的if-constexpr语法和作用》if-constexpr语法是C++17引入的新语法特性,也被称为常量if表达式或静态if(staticif),:本文主要介绍C++中的if-c... 目录1 if-constexpr 语法1.1 基本语法1.2 扩展说明1.2.1 条件表达式1.2.2 fa

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

C++中::SHCreateDirectoryEx函数使用方法

《C++中::SHCreateDirectoryEx函数使用方法》::SHCreateDirectoryEx用于创建多级目录,类似于mkdir-p命令,本文主要介绍了C++中::SHCreateDir... 目录1. 函数原型与依赖项2. 基本使用示例示例 1:创建单层目录示例 2:创建多级目录3. 关键注

Linux修改pip和conda缓存路径的几种方法

《Linux修改pip和conda缓存路径的几种方法》在Python生态中,pip和conda是两种常见的软件包管理工具,它们在安装、更新和卸载软件包时都会使用缓存来提高效率,适当地修改它们的缓存路径... 目录一、pip 和 conda 的缓存机制1. pip 的缓存机制默认缓存路径2. conda 的缓

C++从序列容器中删除元素的四种方法

《C++从序列容器中删除元素的四种方法》删除元素的方法在序列容器和关联容器之间是非常不同的,在序列容器中,vector和string是最常用的,但这里也会介绍deque和list以供全面了解,尽管在一... 目录一、简介二、移除给定位置的元素三、移除与某个值相等的元素3.1、序列容器vector、deque

C++常见容器获取头元素的方法大全

《C++常见容器获取头元素的方法大全》在C++编程中,容器是存储和管理数据集合的重要工具,不同的容器提供了不同的接口来访问和操作其中的元素,获取容器的头元素(即第一个元素)是常见的操作之一,本文将详细... 目录一、std::vector二、std::list三、std::deque四、std::forwa

C++字符串提取和分割的多种方法

《C++字符串提取和分割的多种方法》在C++编程中,字符串处理是一个常见的任务,尤其是在需要从字符串中提取特定数据时,本文将详细探讨如何使用C++标准库中的工具来提取和分割字符串,并分析不同方法的适用... 目录1. 字符串提取的基本方法1.1 使用 std::istringstream 和 >> 操作符示

C++原地删除有序数组重复项的N种方法

《C++原地删除有序数组重复项的N种方法》给定一个排序数组,你需要在原地删除重复出现的元素,使得每个元素只出现一次,返回移除后数组的新长度,不要使用额外的数组空间,你必须在原地修改输入数组并在使用O(... 目录一、问题二、问题分析三、算法实现四、问题变体:最多保留两次五、分析和代码实现5.1、问题分析5.

C++ 各种map特点对比分析

《C++各种map特点对比分析》文章比较了C++中不同类型的map(如std::map,std::unordered_map,std::multimap,std::unordered_multima... 目录特点比较C++ 示例代码 ​​​​​​代码解释特点比较1. std::map底层实现:基于红黑