LeetCode 算法:LRU 缓存 c++

2024-06-23 15:12
文章标签 leetcode 算法 c++ 缓存 lru

本文主要是介绍LeetCode 算法:LRU 缓存 c++,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原题链接🔗:
难度:中等⭐️⭐️

题目

请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。

实现 LRUCache 类:

  • LRUCache(int capacity) 以 正整数 作为容量 capacity 初始化 LRU 缓存
  • int get(int key)如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1 。
  • void put(int key, int value) 如果关键字 key 已经存在,则变更其数据值 value ;如果不存在,则向缓存中插入该组 key-value 。如果插入操作导致关键字数量超过 capacity ,则应该 逐出 最久未使用的关键字。

函数 getput 必须以 O(1) 的平均时间复杂度运行。

示例

输入
[“LRUCache”, “put”, “put”, “get”, “put”, “get”, “put”, “get”, “get”, “get”]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
输出
[null, null, null, 1, null, -1, null, -1, 3, 4]

解释
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // 缓存是 {1=1}
lRUCache.put(2, 2); // 缓存是 {1=1, 2=2}
lRUCache.get(1); // 返回 1
lRUCache.put(3, 3); // 该操作会使得关键字 2 作废,缓存是 {1=1, 3=3}
lRUCache.get(2); // 返回 -1 (未找到)
lRUCache.put(4, 4); // 该操作会使得关键字 1 作废,缓存是 {4=4, 3=3}
lRUCache.get(1); // 返回 -1 (未找到)
lRUCache.get(3); // 返回 3
lRUCache.get(4); // 返回 4

提示

  • 1 <= capacity <= 3000
  • 0 <= key <= 10000
  • 0 <= value <= 105
  • 最多调用 2 * 105 次 get 和 put

题解

  1. 解题思路

LeetCode 上的 LRU 缓存问题(题目编号 146)要求我们实现一个 LRU 缓存类,该类支持两种操作:get 和
put。以下是解决这个问题的一般思路:

  • 理解问题:
    • get(key): 从缓存中获取键对应的值(如果存在)。缓存中键的最近使用时间应该被更新为当前时间。 -
    • put(key, value): 向缓存中插入或更新键和值。如果键已存在,则更新其值并更新其使用时间。如果键不存在,并且缓存已满,则需要先移除最久未使用的键。
  • 设计数据结构: 为了实现 LRU 缓存,我们需要两个主要的数据结构:
    • 哈希表:存储键到值的映射,以及键到双向链表中节点的引用,以便 O(1) 时间复杂度的访问。
    • 双向链表:存储缓存项的顺序,最近使用的项在头部,最久未使用的项在尾部。
  • 算法实现:
    • 初始化:创建一个固定大小的哈希表和空的双向链表。
    • get(key): 检查键是否存在于哈希表中。 如果存在,移动该键关联的节点到双向链表的头部,表示最近使用。 返回键对应的值。 如果不存在,返回 -1。
    • put(key, value)
      • 如果键已存在于哈希表中,更新其值,并将节点移动到双向链表的头部。
      • 如果键不存在:
        • 如果缓存未满,创建新节点,添加到双向链表的头部,并在哈希表中添加键到节点的映射。
        • 如果缓存已满,从双向链表尾部移除最久未使用的节点,并从哈希表中删除对应的键。
        • 然后,创建新节点,添加到双向链表的头部,并更新哈希表。
  1. 复杂度:时间复杂度O(1),空间复杂度O(capacity)。
  2. c++ demo
#include <iostream>
#include <unordered_map>
#include <list>class LRUCache {
private:int capacity;std::list<int> items; // 双向链表,存储键std::unordered_map<int, std::list<int>::iterator> cache; // 哈希表,存储键到链表迭代器的映射void moveToHead(int key) {items.splice(items.begin(), items, cache[key]); // 将节点移动到头部}void removeLeastRecent() {if (!items.empty()) {cache.erase(items.back()); // 从哈希表中删除items.pop_back(); // 从链表中删除}}public:LRUCache(int capacity) : capacity(capacity) {}int get(int key) {if (cache.find(key) != cache.end()) {moveToHead(key);return items.front();}else {return -1; // 键不存在}}void put(int key, int value) {if (cache.find(key) != cache.end()) {items.erase(cache[key]); // 从链表中删除旧节点cache.erase(key);}if (items.size() >= capacity) {removeLeastRecent(); // 检查是否需要淘汰}items.push_front(key); // 添加新节点到头部cache[key] = items.begin(); // 更新哈希表}
};int main() {LRUCache cache(2);cache.put(1, 1);std::cout << "Get 1: " << cache.get(1) << std::endl; // 返回 1cache.put(2, 2);std::cout << "Get 2: " << cache.get(2) << std::endl; // 返回 2cache.put(3, 3); // 淘汰键 1 使用 putstd::cout << "Get 1: " << cache.get(1) << std::endl; // 返回 -1 (未找到)std::cout << "Get 3: " << cache.get(3) << std::endl; // 返回 3cache.put(4, 4); // 淘汰键 2 使用 putstd::cout << "Get 2: " << cache.get(2) << std::endl; // 返回 -1 (未找到)cache.put(2, 6); // 重新添加键 2std::cout << "Get 2: " << cache.get(2) << std::endl; // 返回 6return 0;
}
  • 输出结果:

Get 1: 1
Get 2: 2
Get 1: -1
Get 3: 3
Get 2: -1
Get 2: 2

LRU 缓存

LRU(Least Recently Used)缓存是一种常用的缓存淘汰策略,它基于一个原则:如果数据最近被访问过,那么将来被访问的几率也更高。LRU 缓存通常用于操作系统、数据库、Web 服务器等场景,以减少内存或存储的使用,同时保持最常访问的数据可用。

LRU 缓存的实现

实现 LRU 缓存的一种常见方法是使用哈希表和双向链表。哈希表提供了 O(1) 的访问时间复杂度,而双向链表则允许我们以 O(1) 的时间复杂度进行数据的添加和删除操作。

数据结构
  1. 哈希表:存储键和对应节点的指针,以便快速访问。
  2. 双向链表:存储缓存中的项,最近使用的项在头部,最不常使用的项在尾部。
操作
  1. 访问缓存

    • 检查键是否存在于哈希表中。
    • 如果存在,将对应的节点移动到双向链表的头部。
    • 如果不存在,根据需要从链表尾部移除一个节点(如果缓存已满),然后将新节点添加到头部。
  2. 添加到缓存

    • 如果键已存在,更新其值,并将节点移动到链表头部。
    • 如果键不存在,创建新节点,添加到链表头部,并在哈希表中记录。
  3. 淘汰缓存

    • 当缓存达到容量限制时,从链表尾部移除最不常使用的项,并从哈希表中删除相应的键。

示例代码

以下是使用 C++ 实现的 LRU 缓存的简单示例:

#include <iostream>
#include <list>
#include <unordered_map>class LRUCache {
private:int capacity;std::list<int> items; // 双向链表,存储键std::unordered_map<int, std::list<int>::iterator> cache; // 哈希表,存储键到链表迭代器的映射void moveToHead(int key) {items.splice(items.begin(), items, cache[key]); // 将节点移动到头部}void removeLeastRecent() {if (items.size() > capacity) {cache.erase(items.back()); // 从哈希表中删除items.pop_back(); // 从链表中删除}}public:LRUCache(int capacity) : capacity(capacity) {}int get(int key) {if (cache.find(key) != cache.end()) {moveToHead(key);return items.front();} else {return -1; // 键不存在}}void put(int key, int value) {if (cache.find(key) != cache.end()) {items.erase(cache[key]); // 从链表中删除旧节点} else {removeLeastRecent(); // 检查是否需要淘汰}items.push_front(key); // 添加新节点到头部cache[key] = items.begin(); // 更新哈希表}
};int main() {LRUCache cache(2);cache.put(1, 1);std::cout << cache.get(1) << std::endl; // 返回 1cache.put(2, 2);std::cout << cache.get(2) << std::endl; // 返回 2cache.put(3, 3); // 淘汰键 1std::cout << cache.get(1) << std::endl; // 返回 -1 (未找到)std::cout << cache.get(3) << std::endl; // 返回 3cache.put(4, 4); // 淘汰键 2std::cout << cache.get(2) << std::endl; // 返回 -1 (未找到)return 0;
}

这个示例展示了 LRU 缓存的基本操作,包括 getput 方法。get 方法用于访问缓存中的项,而 put 方法用于添加或更新缓存中的项。如果缓存达到容量限制,put 方法还会淘汰最不常使用的项。

这篇关于LeetCode 算法:LRU 缓存 c++的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1087515

相关文章

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

从入门到精通C++11 <chrono> 库特性

《从入门到精通C++11<chrono>库特性》chrono库是C++11中一个非常强大和实用的库,它为时间处理提供了丰富的功能和类型安全的接口,通过本文的介绍,我们了解了chrono库的基本概念... 目录一、引言1.1 为什么需要<chrono>库1.2<chrono>库的基本概念二、时间段(Durat

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

c++中的set容器介绍及操作大全

《c++中的set容器介绍及操作大全》:本文主要介绍c++中的set容器介绍及操作大全,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录​​一、核心特性​​️ ​​二、基本操作​​​​1. 初始化与赋值​​​​2. 增删查操作​​​​3. 遍历方

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决

C++11委托构造函数和继承构造函数的实现

《C++11委托构造函数和继承构造函数的实现》C++引入了委托构造函数和继承构造函数这两个重要的特性,本文主要介绍了C++11委托构造函数和继承构造函数的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录引言一、委托构造函数1.1 委托构造函数的定义与作用1.2 委托构造函数的语法1.3 委托构造函

C++11作用域枚举(Scoped Enums)的实现示例

《C++11作用域枚举(ScopedEnums)的实现示例》枚举类型是一种非常实用的工具,C++11标准引入了作用域枚举,也称为强类型枚举,本文主要介绍了C++11作用域枚举(ScopedEnums... 目录一、引言二、传统枚举类型的局限性2.1 命名空间污染2.2 整型提升问题2.3 类型转换问题三、C

C++链表的虚拟头节点实现细节及注意事项

《C++链表的虚拟头节点实现细节及注意事项》虚拟头节点是链表操作中极为实用的设计技巧,它通过在链表真实头部前添加一个特殊节点,有效简化边界条件处理,:本文主要介绍C++链表的虚拟头节点实现细节及注... 目录C++链表虚拟头节点(Dummy Head)一、虚拟头节点的本质与核心作用1. 定义2. 核心价值二

C++ 检测文件大小和文件传输的方法示例详解

《C++检测文件大小和文件传输的方法示例详解》文章介绍了在C/C++中获取文件大小的三种方法,推荐使用stat()函数,并详细说明了如何设计一次性发送压缩包的结构体及传输流程,包含CRC校验和自动解... 目录检测文件的大小✅ 方法一:使用 stat() 函数(推荐)✅ 用法示例:✅ 方法二:使用 fsee