颠覆传统编程:用ChatGPT十倍提升生产力

2024-06-23 15:12

本文主要是介绍颠覆传统编程:用ChatGPT十倍提升生产力,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

我们即将见证一个新的时代!这是最好的时代,也是最坏的时代!

需求背景

背景:

平时会编写博客,并且会把这个博客上传到github上,然后自己买一个域名挂到github上。

我平时编写的博客会有一些图片来辅助说明的,写完之后如果我把图片和文字全部都上传到博客网站,后期图片很多时就会导致网站加载特别慢

所以想把图片存储在一个公共的对象存储平台(腾讯云的cos服务),这样只要上传一个公共访问链接即可,极大的减少存储空间。

需求:

每次写完博客都要手动上传图片,然后把得到的链接在复制到本地的markdown文件中,如果一篇文章的图片特别多,这简直就是灾难!所以我想

  1. 给一个文件路径,自动把markdown文件中本地的图片上传到腾讯云的cos平台,并获取公共链接

  2. 把本地的文章的链接自动替换为公共链接

调研和设计

腾讯云cos服务是提供这样的接口的,但是接口需要鉴权,所以我把上诉的需求拆解为三部分

  • 生成鉴权sign_key
  • 调用腾讯云的接口上传图片,并获取链接
  • 输入markdown文件,找到本地图片链接,上传并替换为公共链接

错误示范

我阅读腾讯云的cos文档,需要提供签名,一共需要八个步骤才能生成


我把这八个过程每一个过程都复制给chatgpt,让他帮我写


总结

后面太多我就不演示了,我直接说总结:

  • 在这个过程中给我的代码基本都是可以运行的,我只需要微调一下就可以用,报错直接扔给他也基本都可以解决
  • 但是整个过程还是需要我理解每一步,并且把这八个步骤进行汇总和调整
  • 比Google搜索要好用一点,但是还没有那么好用,总感觉差点意思

正确示范

生成上面的签名之后,我就让他去写上传接口


仔细阅读一下上面的第二张图片,我要求**【把其中的url的uri替换为文件名,然后它给我代码并解释这是做什么,它说这是上传到【腾讯云的cos服务】,要知道我在这之前是完全没有提到过【腾讯云】、【cos服务】等字眼的,也就是它只依赖我提供的hostcoder-xieshijie-img-1253784930.cos.ap-beijing.myqcloud.com】**这个域名,就判断出我这是腾讯云的cos服务,这就有点厉害了,更厉害的是,当然要求他写一个测试用例:

它直接把我之前费力八个步骤生成的签名直接生成了!这太离谱了!

  • 我以为:chatgpt不知道腾讯云cos签名的生成过程,然后我阅读文档,把八个步骤重组并依次喂给chatgpt,让他帮我写
  • 实际上:chatgpt不仅知道腾讯云cos,在我要求他上传时,就自动把官方推荐的生成签名的方式给我生成了!

这意味着以后大部分网络开源的内容,你甚至不用阅读啃文档,你只要知道一个概念,剩下的就交给他就可以!

后面的上传和替换markdown的内容我就不截图,后面对于chatgpt就非常简单了,最后附上完整的代码(95%是chatgpt写的)

# -*- coding=utf-8
import hmac
import hashlib
import os
import re
import requests# 定义 SecretKey 和 KeyTime
# 替换为自己的key和id
secret_key = "xieshijie_key"
key_time = "1680947045;2980950645"
secret_id = "xieshijie_id"
http_method = 'put'def generate_url_param_list():return ""def generate_header_list():return ""def generate_sign_key_val(uri_pathname):# 生成 SignKeysign_key = hmac.new(secret_key.encode(),key_time.encode(),hashlib.sha1).hexdigest()# 生成 HttpStringhttp_string = f"{http_method.lower()}\n{uri_pathname}\n"http_string += "\n"http_string += "\n"# 生成 StringToSignstring_to_sign = f"sha1\n{key_time}\n{hashlib.sha1(http_string.encode()).hexdigest()}\n"# 生成 Signaturesignature = hmac.new(sign_key.encode(),string_to_sign.encode(),hashlib.sha1).hexdigest()# 生成签名sign_key_val = f"q-sign-algorithm=sha1" \f"&q-ak={secret_id}" \f"&q-sign-time={key_time}" \f"&q-key-time={key_time}" \f"&q-header-list={generate_header_list()}" \f"&q-url-param-list={generate_url_param_list()}" \f"&q-signature={signature}"return sign_key_valdef generate_file_name(file_path):# 获取文件名return file_path.split('/')[-1]def put_request(file_path, sign_key):# 设置请求头headers = {'host': 'coder-xieshijie-img-1253784930.cos.ap-beijing.myqcloud.com','Authorization': sign_key}# 设置请求体with open(file_path, 'rb') as f:data = f.read()uri = generate_file_name(file_path)# 发送 PUT 请求url = f'https://coder-xieshijie-img-1253784930.cos.ap-beijing.myqcloud.com/{uri}'response = requests.put(url, headers=headers, data=data)# 判断响应状态码并返回结果if response.status_code == 200:print('本地图片上传成功')return urlelse:print('本地图片上传失败')return 'fail'def replace_local_image_links(file_path):"""读取Markdown文件,提取其中的本地图片链接并替换为基于图片名称计算的新链接。Args:file_path (str): Markdown文件路径。"""# 判断文件是否是Markdown格式if not file_path.endswith('.md'):print('该文件不是Markdown格式。')return# 读取Markdown文件内容with open(file_path, 'r', encoding='utf-8') as f:content = f.read()# 匹配所有本地图片链接  匹配形式为:![...](...)regex = r"!\[\S+\]\((\S+)\)"matches = re.findall(regex, content)# 替换本地图片链接为新链接for match in matches:# 判断链接是否是本地路径if not match.startswith('http'):# 获取图片名称和路径if os.path.isabs(match):image_name = os.path.basename(match)image_path = matchelse:image_name = os.path.basename(match)image_path = os.path.abspath(os.path.join(os.path.dirname(file_path), match))sign_key = generate_sign_key_val('/' + image_name)# 上传图片到COS并计算新链接new_link = put_request(image_path, sign_key)# 替换Markdown文件中的链接content = content.replace(match, new_link)# 将替换后的Markdown内容写回文件with open(file_path, 'w', encoding='utf-8') as f:f.write(content)print('本地图片链接替换完成。')if __name__ == '__main__':# 测试替换replace_local_image_links("/Users/xieshijie/Desktop/test.md")

我用了差不多半天的时间完成这件事,大部分时间是阅读腾讯云的cos服务文档和分步骤生成签名的过程,如果正确使用实际我觉得可以缩短到1个小时!


升级plus

整个过程让我对ChatGPT的潜力有了更深的认识。起初,我花费了半天的时间,主要用于阅读腾讯云COS服务的文档以及分步骤生成签名的过程。然而,正确利用ChatGPT实际上可以将这个过程缩短到一个小时,甚至更少。

ChatGPT不仅能高效地生成代码,还能在一些复杂的任务中表现出强大的理解和推理能力。这次体验让我更加坚定地认为,ChatGPT正在以一种前所未有的方式颠覆传统的编程和开发流程,真正实现了十倍的生产力提升。

于是,我果断充了一个GPT-4

image-20240623134517420


更多惊喜

我们的公众号还将定期分享:

  • 最新互联网资讯:让你时刻掌握行业动态。

  • AI前沿新闻:紧跟技术潮流,不断提升自我。

  • 技术分享与职业发展:助你在职业生涯中走得更远、更稳。

  • 程序员生活趣事:让你在忙碌的工作之余找到共鸣与乐趣。

关注回复【1024】惊喜等你来拿!

敬请关注【程序员世杰】

coder_world_618

这篇关于颠覆传统编程:用ChatGPT十倍提升生产力的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1087514

相关文章

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

SpringBoot整合DeepSeek实现AI对话功能

《SpringBoot整合DeepSeek实现AI对话功能》本文介绍了如何在SpringBoot项目中整合DeepSeekAPI和本地私有化部署DeepSeekR1模型,通过SpringAI框架简化了... 目录Spring AI版本依赖整合DeepSeek API key整合本地化部署的DeepSeek

C#多线程编程中导致死锁的常见陷阱和避免方法

《C#多线程编程中导致死锁的常见陷阱和避免方法》在C#多线程编程中,死锁(Deadlock)是一种常见的、令人头疼的错误,死锁通常发生在多个线程试图获取多个资源的锁时,导致相互等待对方释放资源,最终形... 目录引言1. 什么是死锁?死锁的典型条件:2. 导致死锁的常见原因2.1 锁的顺序问题错误示例:不同

使用DeepSeek API 结合VSCode提升开发效率

《使用DeepSeekAPI结合VSCode提升开发效率》:本文主要介绍DeepSeekAPI与VisualStudioCode(VSCode)结合使用,以提升软件开发效率,具有一定的参考价值... 目录引言准备工作安装必要的 VSCode 扩展配置 DeepSeek API1. 创建 API 请求文件2.

PyCharm接入DeepSeek实现AI编程的操作流程

《PyCharm接入DeepSeek实现AI编程的操作流程》DeepSeek是一家专注于人工智能技术研发的公司,致力于开发高性能、低成本的AI模型,接下来,我们把DeepSeek接入到PyCharm中... 目录引言效果演示创建API key在PyCharm中下载Continue插件配置Continue引言

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Ubuntu系统怎么安装Warp? 新一代AI 终端神器安装使用方法

《Ubuntu系统怎么安装Warp?新一代AI终端神器安装使用方法》Warp是一款使用Rust开发的现代化AI终端工具,该怎么再Ubuntu系统中安装使用呢?下面我们就来看看详细教程... Warp Terminal 是一款使用 Rust 开发的现代化「AI 终端」工具。最初它只支持 MACOS,但在 20

C#反射编程之GetConstructor()方法解读

《C#反射编程之GetConstructor()方法解读》C#中Type类的GetConstructor()方法用于获取指定类型的构造函数,该方法有多个重载版本,可以根据不同的参数获取不同特性的构造函... 目录C# GetConstructor()方法有4个重载以GetConstructor(Type[]