Interview preparation--elasticSearch倒排索引原理

2024-06-23 14:04

本文主要是介绍Interview preparation--elasticSearch倒排索引原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

搜索引擎应该具备哪些要求
  • 查询速度快
    • 优秀的索引结构设计
    • 高效率的压缩算法
    • 快速的编码和解码速度
  • 结果准确
    • ElasiticSearch 中7.0 版本之后默认使用BM25 评分算法
    • ElasticSearch 中 7.0 版本之前使用 TP-IDF算法
倒排索引原理
  • 当我们有如下列表数据信息,并且系统数据量达到10亿,100亿级别的时候,我们系统该如何去解决查询速度的问题。
  • 数据库选择—mysql, sybase,oracle,mongodb,唯一加速查询的方法是添加索引
索引
  • 无论哪一种存储引擎的索引都是如下几个特点
    • 帮助快速检索
    • 以数据结构为载体
    • 以文件的形式落地
  • 如下图中mysql的文件形式,其中的idb文件就是使用innodb存储引擎来实现数据存储生成的文件,其他后缀的文件是其他存储引擎生成的,因此无论什么引擎,索引方式,数据结构最终都是要落文件的

在这里插入图片描述

  • 传统数据库的基本结构如下:

在这里插入图片描述

  • MySql包括Server层和存储引擎层:Server层包括,连接器,查询缓存,分析器,优化器,执行器
  • 连接器:负责和客户端建立连接
  • 查询缓存:MySql获取到查询请求后,会先查询缓存,如果之前已经执行过一样的语句结果会以Key-value的形式存储到内存中,key是查询语句,value是查询结果。缓存明中的话可以很快完成查询,但是大多是情况不能明中,不建议用缓存,因为缓存失效非常频繁,任何对表的更新都会让缓存晴空,所以对一个进程更改的表而言,查询缓存基本不可用,除非是一张配置表。可以通过配置来决定释放开启查询缓存,并且MySql8.0 之间删除了查询缓存功能
  • 分析器:词法分析,识别语句中表名,列名,语法分析,判断Sql是否满足MySql语法
  • 优化器:在有多个索引的情况下,决定使用哪个索引,或者多表联合查询的时候,表的连接顺序这么执行等
  • 执行器:执行器先判断权限,有权限才会去调用存储引擎对应的查询接口,默认InnoDB
数据载体 mongodb & mysql
  • 以为mongodb为案例,索引数据存储的结构如下

在这里插入图片描述

  • Mongodb索引使用的是B树:B树是多叉平衡查找树,包括以下几个结构特性

    • 左子树数据小于跟数据,右子树数据大于根节点数据
    • 左右子树高度差不大于1
    • 每个节点可以有N个字节的,N>2
  • B树的每个节点都存放 索引 & 数据,数据遍布整个树结构,搜索可能在非叶子结点结束,最好情况是O(1)

  • B树存在的问题:

    • 紫色部分存储数据的主键信息,蓝色存储的是指针指向下一个节点,黄色部分是存储的主键对应的数据Data。因此Data是在节点中占比最大的一部分数据,他可能有1M或者更大的一个数据体
    • 假设我们一个节点的大小是固定的M,在Mysql中最小的数据逻辑单元是数据页,一个数据页是16KB,如果Data越大,M所能容纳的Data个数就越小就导致存储更多的数据久需要更多的节点,B树为了承载更多的节点为了满足结构特性就需要更多的分叉,因此就导致树的深度更大,每一个层级都意味着一次IO操作导致IO次数更多
  • 以为Mysql为案例分析:

在这里插入图片描述

  • Mysql中innoDB 使用的索引结构是B+树,
  • B+ 树是B树的变种,区别在于:
    • 叶子结点保存了完整的索引 & 数据,非叶子结点只保存索引值,因此他的查询时间固定为logn
    • 叶子结点中有指向下一个叶子结点的指针,叶子结点类似一个双向链表
    • 因为叶子结点有完整数据,并且有双链表结构,因此我们在范围查询的时候能有效提升查询效率。
  • 数据都在子节点上,因此非自节点就能容纳更多的索引信息,这样就增加了同一个节点的出度,减少了数据信息,同一个节点久能容纳更多的数据信息,因此能用更少的节点来完成所有数据的索引存储,节点的减少导致减少了树的深度,查询的IO次数就变少了。
倒排索引数据结构
  • 对如上两个索引结构的分析,我们能看到MySql 无法解决大数据索引问题:
    • 第一点:索引往往字段很长,如果使用B+trees,树可能很深,IO很可怕
    • 第二点:索引可能会失效
    • 第三点:查询准确度差,
  • 有如下案例,有1亿条数据的商品信息,我们需要对其中的product字段进行查询,而且是文本信息查询,例如“小米”这个字段查询,那么有如下查询语句:
select * from product where brand like "%小米 NFC 手机%"
  • 第一点说明:以上查询语句,我们需要在product上建索引, MySql上使用的B+树,因为文本的信息量特别的大,导致所需要的节点就更多N个16KB(MySql索引中如果一个数据行的大小超过了页的大小16KB,MySQL 会将该行的部分数据存储在行溢出页中。这意味着数据行会被分割,一部分存储在索引页中,而溢出的部分存储在单独的溢出页中),节点数的增加,导致树深度增大查询IO次数增加
    在这里插入图片描述

  • 第二点说明:“%小米 NFC 手机%” 查询中用做匹配的方式去查询,会导致索引失效,这样导致全表扫描。

  • 第三点说明:“小米 NFC 手机%” 去掉做匹配,走索引的方式,则会只查询"小米 NFC 手机"开头的,这样就会导致结果不准确

ElascitSearch索引解决方案
  • 对product字段进行分词拆分,得到如下一个词项 与id的匹配关系如下

在这里插入图片描述

  • 索引系统通过扫描文章中的每一个词,对其创建索引,指明在文章中出现的次数和位置,当用户查询时,索引系统过就会根据事先建立的索引进行查找,并将查找的结果反馈给用户的检索方式,利用如上表可以快速完成全文检索
  • 在为属性(product)构建倒排索引后,此时,本类别中包含了所有文档中所有字段的一个 分词(term) 文档id对应关系的字典信息通过倒排索引,我们可以迅速找到符合添加的文档,例如“手机” 在文档 1,2,3 中。
  • 当我们进行Elasticsearch查询,为了能快速找到某个term在倒排表中的位置,ElasticSearch 将类型中所有的term进行排序,然后通过二分法查找term,时间复杂度能达到 logN的查找效率,就像通过字典查找一样,这就是Term Dictionary,整个是二级辅助索引
  • 同时参照 B-Tree通过减少磁盘寻道次数来提高查询性能,Elasticsearch也是采用同样的思路,直接通过内存查找term,将term Dictionary这个构建的Mapping存放在内存中。但是如果term太多,term dictionary也会很大,放内存不现实,于是有了Term Index,因此整个ElasticSearch的数据结构如下图

在这里插入图片描述

压缩算法

这篇关于Interview preparation--elasticSearch倒排索引原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1087358

相关文章

Java操作ElasticSearch的实例详解

《Java操作ElasticSearch的实例详解》Elasticsearch是一个分布式的搜索和分析引擎,广泛用于全文搜索、日志分析等场景,本文将介绍如何在Java应用中使用Elastics... 目录简介环境准备1. 安装 Elasticsearch2. 添加依赖连接 Elasticsearch1. 创

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

oracle数据库索引失效的问题及解决

《oracle数据库索引失效的问题及解决》本文总结了在Oracle数据库中索引失效的一些常见场景,包括使用isnull、isnotnull、!=、、、函数处理、like前置%查询以及范围索引和等值索引... 目录oracle数据库索引失效问题场景环境索引失效情况及验证结论一结论二结论三结论四结论五总结ora

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

Python中列表的高级索引技巧分享

《Python中列表的高级索引技巧分享》列表是Python中最常用的数据结构之一,它允许你存储多个元素,并且可以通过索引来访问这些元素,本文将带你深入了解Python列表的高级索引技巧,希望对... 目录1.基本索引2.切片3.负数索引切片4.步长5.多维列表6.列表解析7.切片赋值8.删除元素9.反转列表

MySQL的索引失效的原因实例及解决方案

《MySQL的索引失效的原因实例及解决方案》这篇文章主要讨论了MySQL索引失效的常见原因及其解决方案,它涵盖了数据类型不匹配、隐式转换、函数或表达式、范围查询、LIKE查询、OR条件、全表扫描、索引... 目录1. 数据类型不匹配2. 隐式转换3. 函数或表达式4. 范围查询之后的列5. like 查询6

PostgreSQL如何查询表结构和索引信息

《PostgreSQL如何查询表结构和索引信息》文章介绍了在PostgreSQL中查询表结构和索引信息的几种方法,包括使用`d`元命令、系统数据字典查询以及使用可视化工具DBeaver... 目录前言使用\d元命令查看表字段信息和索引信息通过系统数据字典查询表结构通过系统数据字典查询索引信息查询所有的表名可

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M