Spark算子:RDD行动Action操作(3)–aggregate、fold、lookup

2024-06-23 13:18

本文主要是介绍Spark算子:RDD行动Action操作(3)–aggregate、fold、lookup,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

aggregate

def aggregate[U](zeroValue: U)(seqOp: (U, T) ⇒ U, combOp: (U, U) ⇒ U)(implicit arg0: ClassTag[U]): U
aggregate用户聚合RDD中的元素,先使用seqOp将RDD中每个分区中的T类型元素聚合成U类型,再使用combOp将之前每个分区聚合后的U类型聚合成U类型,特别注意seqOp和combOp都会使用zeroValue的值,zeroValue的类型为U。
var rdd1 = sc.makeRDD(1 to 10,2)
rdd1.mapPartitionsWithIndex{(partIdx,iter) => {var part_map = scala.collection.mutable.Map[String,List[Int]]()while(iter.hasNext){var part_name = "part_" + partIdx;var elem = iter.next()if(part_map.contains(part_name)) {var elems = part_map(part_name)elems ::= elempart_map(part_name) = elems} else {part_map(part_name) = List[Int]{elem}}}part_map.iterator}}.collect
res16: Array[(String, List[Int])] = Array((part_0,List(5, 4, 3, 2, 1)), (part_1,List(10, 9, 8, 7, 6)))

##第一个分区中包含5,4,3,2,1
##第二个分区中包含10,9,8,7,6
scala> rdd1.aggregate(1)(|           {(x : Int,y : Int) => x + y}, |           {(a : Int,b : Int) => a + b}|     )
res17: Int = 58

结果为什么是58,看下面的计算过程:

##先在每个分区中迭代执行 (x : Int,y : Int) => x + y 并且使用zeroValue的值1
##即:part_0中 zeroValue+5+4+3+2+1 = 1+5+4+3+2+1 = 16
## part_1中 zeroValue+10+9+8+7+6 = 1+10+9+8+7+6 = 41
##再将两个分区的结果合并(a : Int,b : Int) => a + b ,并且使用zeroValue的值1
##即:zeroValue+part_0+part_1 = 1 + 16 + 41 = 58

再比如:
scala> rdd1.aggregate(2)(|           {(x : Int,y : Int) => x + y}, |           {(a : Int,b : Int) => a * b}|     )
res18: Int = 1428

##这次zeroValue=2
##part_0中 zeroValue+5+4+3+2+1 = 2+5+4+3+2+1 = 17
##part_1中 zeroValue+10+9+8+7+6 = 2+10+9+8+7+6 = 42
##最后:zeroValue*part_0*part_1 = 2 * 17 * 42 = 1428

因此,zeroValue即确定了U的类型,也会对结果产生至关重要的影响,使用时候要特别注意。

fold

def fold(zeroValue: T)(op: (T, T) ⇒ T): T

fold是aggregate的简化,将aggregate中的seqOp和combOp使用同一个函数op。
scala> rdd1.fold(1)(|       (x,y) => x + y    |     )
res19: Int = 58##结果同上面使用aggregate的第一个例子一样,即:
scala> rdd1.aggregate(1)(|           {(x,y) => x + y}, |           {(a,b) => a + b}|     )
res20: Int = 58

lookup


def lookup(key: K): Seq[V]

lookup用于(K,V)类型的RDD,指定K值,返回RDD中该K对应的所有V值。
scala> var rdd1 = sc.makeRDD(Array(("A",0),("A",2),("B",1),("B",2),("C",1)))
rdd1: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[0] at makeRDD at :21scala> rdd1.lookup("A")
res0: Seq[Int] = WrappedArray(0, 2)scala> rdd1.lookup("B")
res1: Seq[Int] = WrappedArray(1, 2)

这篇关于Spark算子:RDD行动Action操作(3)–aggregate、fold、lookup的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1087268

相关文章

Java操作Word文档的全面指南

《Java操作Word文档的全面指南》在Java开发中,操作Word文档是常见的业务需求,广泛应用于合同生成、报表输出、通知发布、法律文书生成、病历模板填写等场景,本文将全面介绍Java操作Word文... 目录简介段落页头与页脚页码表格图片批注文本框目录图表简介Word编程最重要的类是org.apach

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

mysql表操作与查询功能详解

《mysql表操作与查询功能详解》本文系统讲解MySQL表操作与查询,涵盖创建、修改、复制表语法,基本查询结构及WHERE、GROUPBY等子句,本文结合实例代码给大家介绍的非常详细,感兴趣的朋友跟随... 目录01.表的操作1.1表操作概览1.2创建表1.3修改表1.4复制表02.基本查询操作2.1 SE

c++中的set容器介绍及操作大全

《c++中的set容器介绍及操作大全》:本文主要介绍c++中的set容器介绍及操作大全,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录​​一、核心特性​​️ ​​二、基本操作​​​​1. 初始化与赋值​​​​2. 增删查操作​​​​3. 遍历方

MySQL追踪数据库表更新操作来源的全面指南

《MySQL追踪数据库表更新操作来源的全面指南》本文将以一个具体问题为例,如何监测哪个IP来源对数据库表statistics_test进行了UPDATE操作,文内探讨了多种方法,并提供了详细的代码... 目录引言1. 为什么需要监控数据库更新操作2. 方法1:启用数据库审计日志(1)mysql/mariad

springboot如何通过http动态操作xxl-job任务

《springboot如何通过http动态操作xxl-job任务》:本文主要介绍springboot如何通过http动态操作xxl-job任务的问题,具有很好的参考价值,希望对大家有所帮助,如有错... 目录springboot通过http动态操作xxl-job任务一、maven依赖二、配置文件三、xxl-

Oracle 数据库数据操作如何精通 INSERT, UPDATE, DELETE

《Oracle数据库数据操作如何精通INSERT,UPDATE,DELETE》在Oracle数据库中,对表内数据进行增加、修改和删除操作是通过数据操作语言来完成的,下面给大家介绍Oracle数... 目录思维导图一、插入数据 (INSERT)1.1 插入单行数据,指定所有列的值语法:1.2 插入单行数据,指

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

Linux链表操作方式

《Linux链表操作方式》:本文主要介绍Linux链表操作方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、链表基础概念与内核链表优势二、内核链表结构与宏解析三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势六、典型应用场景七、调试技巧与

Java Multimap实现类与操作的具体示例

《JavaMultimap实现类与操作的具体示例》Multimap出现在Google的Guava库中,它为Java提供了更加灵活的集合操作,:本文主要介绍JavaMultimap实现类与操作的... 目录一、Multimap 概述Multimap 主要特点:二、Multimap 实现类1. ListMult