本文主要是介绍Spark算子:RDD键值转换操作(3)–groupByKey、reduceByKey、reduceByKeyLocally,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
groupByKey
def groupByKey(): RDD[(K, Iterable[V])]
def groupByKey(numPartitions: Int): RDD[(K, Iterable[V])]
def groupByKey(partitioner: Partitioner): RDD[(K, Iterable[V])]
该函数用于将RDD[K,V]中每个K对应的V值,合并到一个集合Iterable[V]中,
参数partitioner用于指定分区函数;
scala> var rdd1 = sc.makeRDD(Array(("A",0),("A",2),("B",1),("B",2),("C",1)))
rdd1: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[89] at makeRDD at :21scala> rdd1.groupByKey().collect
res81: Array[(String, Iterable[Int])] = Array((A,CompactBuffer(0, 2)), (B,CompactBuffer(2, 1)), (C,CompactBuffer(1)))
reduceByKey
def reduceByKey(func: (V, V) => V): RDD[(K, V)]def reduceByKey(func: (V, V) => V, numPartitions: Int): RDD[(K, V)]
def reduceByKey(partitioner: Partitioner, func: (V, V) => V): RDD[(K, V)]
该函数用于将RDD[K,V]中每个K对应的V值根据映射函数来运算。
参数numPartitions用于指定分区数;
参数partitioner用于指定分区函数;
scala> var rdd1 = sc.makeRDD(Array(("A",0),("A",2),("B",1),("B",2),("C",1)))
rdd1: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[91] at makeRDD at :21scala> rdd1.partitions.size
res82: Int = 15scala> var rdd2 = rdd1.reduceByKey((x,y) => x + y)
rdd2: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[94] at reduceByKey at :23scala> rdd2.collect
res85: Array[(String, Int)] = Array((A,2), (B,3), (C,1))scala> rdd2.partitions.size
res86: Int = 15scala> var rdd2 = rdd1.reduceByKey(new org.apache.spark.HashPartitioner(2),(x,y) => x + y)
rdd2: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[95] at reduceByKey at :23scala> rdd2.collect
res87: Array[(String, Int)] = Array((B,3), (A,2), (C,1))scala> rdd2.partitions.size
res88: Int = 2
reduceByKeyLocally
def reduceByKeyLocally(func: (V, V) => V): Map[K, V]该函数将RDD[K,V]中每个K对应的V值根据映射函数来运算,运算结果映射到一个Map[K,V]中,而不是RDD[K,V]。
scala> var rdd1 = sc.makeRDD(Array(("A",0),("A",2),("B",1),("B",2),("C",1)))
rdd1: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[91] at makeRDD at :21scala> rdd1.reduceByKeyLocally((x,y) => x + y)
res90: scala.collection.Map[String,Int] = Map(B -> 3, A -> 2, C -> 1)
转载请注明:Spark算子:RDD键值转换操作(3)–groupByKey、reduceByKey、reduceByKeyLocally
这篇关于Spark算子:RDD键值转换操作(3)–groupByKey、reduceByKey、reduceByKeyLocally的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!